

Vistribute: Distributing Interactive Visualizations in Dynamic Multi-Device Setups

Tom Horak, Andreas Mathisen, Clemens N. Klokmose, Raimund Dachselt, Niklas Elmqvist

Nowadays, data analysis can take place in many different environments with various devices

How can we maximize the advantages of multi-device setups while ensuring a minimal user effort?

What we know: devices can fulfill different roles during visual data analysis

Roles emerging from data exploration patterns, e.g., overview+detail, focus+context

Roles emerging from multi-user constellations, e.g., personal toolboxes, shared interaction space

So far:

- Only systems for specific device combinations
- Lacking support for flexibly placing visualizations
- Increasing configuration effort with many devices

Kister et al., CGF '17: GraSp Wozinak et al., NordiCHI '14: *Thaddeus*

McGrath et al., AVI '12: Branch-merge-explore

Horak et al., CHI '18: *When David meets Goliath*

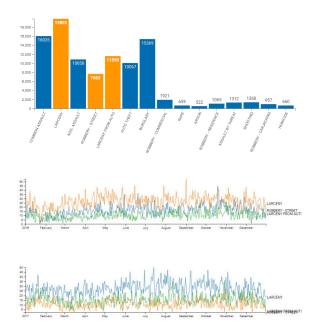
Plank et al., CHI '17: Is Two Enough?!

Langner et al., VIS '18: *VisTiles*

What we know: various frameworks for cross-device development exist, but rarely focus on visualizations

Synchronization frameworks: Support for synchronizing elements or events across devices

Badam and Elmqvist 2014: *PolyChrome* Badam et al. 2015: *Munin* Houben & Marquardt 2015: *WATCHCONNECT* Klokmose et al. 2015: *Webstrates* Schreiner et al. 2015: *Connichiwa*


Distribution frameworks: Automatic distribution of components based on manually defined constraints

Yang & Wigdor 2014: *Panelrama* Nebeling & Dey 2016, Nebeling 2017: *XDBrowser* Husmann et al. 2018: *Out of Office Software Development* Park et al. 2018: *AdaM*

So far, all frameworks...

- rely on additional input from developers or users
- do rarely consider visualization-specific aspects

Visualizations are more than "just" views

Visualizations have a rich body of characteristics and certain relationships to other visualizations

Visualization Type Encoding Size
Data Points Visual Density Internal State
Axis Data Source

Idea: Considering these aspects alongside device properties and user preferences

We contribute the Vistribute framework

Design Space

Exploring the properties and relationships between visualizations, devices, and the user

6 Heuristics

High-level constraints for deriving a view-sensitive distribution and layout

Vistribute System

Open source implementation representing one possible instance of our heuristics

Each heuristic contributes to different aspects of a distribution

Grouping & alignment based on view relationships

1 Visual Similarity 2 Data Similarity 3 Input Connectivity

View adjustments and device assignments

* 4Data Density* 5Device Suitability

Allowing adaptations by users

6 User Preferences

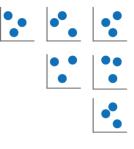
Grouping & alignment based on view relationships

Visual Similarity promotes comparison

If two views are visually very similar, they should be both juxtaposed and aligned.

2 Data Similarity indicates alternative representations

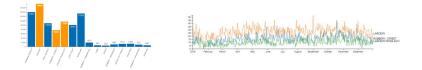
If two views have a high degree of data similarity and a corresponding visual similarity, they should be placed close to each other.


Input Connectivity fosters the data exploration

If an interface component serves as data input for others, it should be placed close to the affected components.

Example: Small multiples

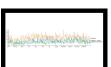
Example: Scatterplot matrix



Example: Dashboard

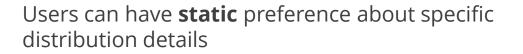
View adjustments and device assignments

4 Data Density influences the space requirement


A view should be **allocated space proportional** to the **number of data points** it encodes.

Device Suitability differs for all visualizations

If devices are diverse, view assignments should be guided by device suitability.



Allowing adaptations by the user:

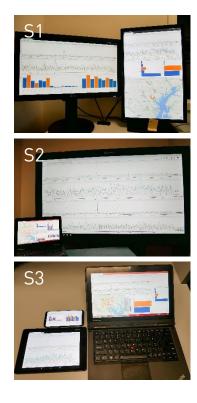
6 User preferences always exists

If user **preferences** are applicable, they **outweigh all other heuristics**.

In the context of analysis tasks, **temporary** user interest can occur

Web-based prototype serving as an example implementation

User-created distributions versus Vistribute: a small-scale comparison study


- 6 participants (1 female, 5 male; active in the field > 3 years)
- Ō 2 phases; approx. 60 minutes per session
- Think-aloud protocol

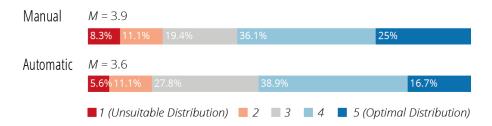
Phase 1:

Manually distributing 10 visualizations in 3 different setups

Phase 2:

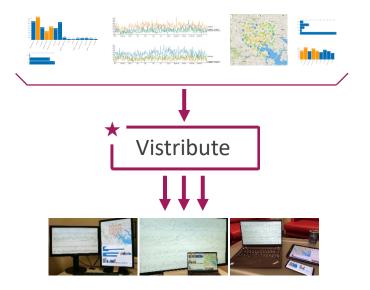
Per setup, rating of 3 existing distributions (2 created by other participants, 1 by Vistribute)

In most cases, multiple reasonable distributions exist


Personal preferences have a strong influence

User considered similar aspects as our heuristics

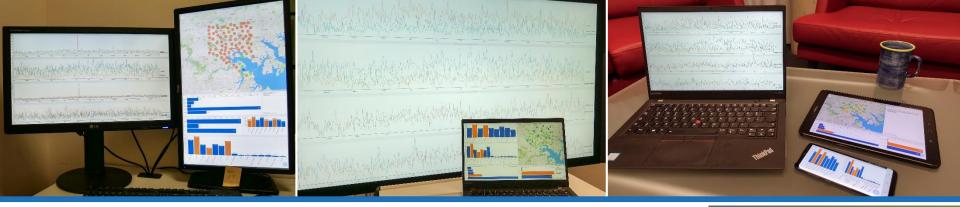
] Manual distributions rated slightly better



Towards effortless multi-device environments

- Manually distributing is "exhausting", "there should be an optimization for this"
- On average, participants spent 8 minutes on one distribution

Vistribute provides reasonable distributions without requiring additional user input



Towards effortless multi-device environments

Next: Investigating how analysts work in MDEs Refinement of heuristics and investigate cross-device interactions

From heuristics towards formalism Incorporating AI mechanisms to further improve distributions

From distribution towards visualization generation Generating suitable visualization for the user's current goals

Vistribute: Distributing Interactive Visualizations in Dynamic Multi-Device Setups

Open positions for **PhD students** and **Postdocs > imld.de/jobs**

Tom Horak - Interactive Media Lab, Technische Universität Dresden – <u>horakt@acm.org</u> Andreas Mathisen – Department of Computer Science, Aarhus University – <u>am@cs.au.dk</u> Clemens N. Klokmose – Digital Design & Information Studies, Aarhus University – <u>clemens@cavi.au.dk</u> Raimund Dachselt – Interactive Media Lab, Technische Universität Dresden – <u>dachselt@acm.org</u> Niklas Elmqvist – College of Information Studies, University of Maryland – <u>elm@umd.edu</u>

imld.de/vistribute

ACM CHI 2019 Glasgow, Scotland, UK

INTERACTIVE MEDIA LAB DRESDEN

