
CubeQuery: Tangible Interface for
Creating and Manipulating
Database Queries

Ricardo Langner
Interactive Media Lab
Technische Universität Dresden
Dresden, Germany
langner@acm.org

Anton Augsburg
Interactive Media Lab
Technische Universität Dresden
Dresden, Germany

Raimund Dachselt
Interactive Media Lab
Technische Universität Dresden
Dresden, Germany
dachselt@acm.org

c© Ricardo Langner, Anton Augsburg and Raimund Dachselt.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the Ninth ACM International Conference on Interactive
Tabletops and Surfaces, http://dx.doi.org/10.1145/2669485.2669526.

Figure 1: Small tangibles allow
users to create and manipulate
search parameters of a database
query. (↑ top) Initially every
token is unbound, i.e., without a
selected facet. (↓ bottom) Token
with selected facet (i.e., year)
and values.

Abstract
We demonstrate CubeQuery , a tangible user interface
providing a physical way to both create and manipulate
basic database queries. This interactive installation is
designed for individual faceted browsing and allows users
to explore contents of a database, i.e., a music library.
While each tangible represents an individual search
parameter of a search request, the physical arrangement
of multiple tangibles permits the combination of search
parameters by utilizing basic logical operators. Goal of
this research is to explore the practicality of spatial
arrangement of tangibles to ease the process of faceted
browsing.

Author Keywords
Tangible UIs; Faceted Browsing & Search; Database
Queries; Sifteo Cubes; Microsoft Surface

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation: User
Interfaces].

Introduction
Using a tangible query interface to physically create and
manipulate search requests has been investigated in
several research projects [1, 2, 6]. However, using active



tangibles – tangibles equipped with, e.g., a display, a
number of sensors, or wireless communication – for such
search tasks had previously received more attention [7].
Therefore, our CubeQuery concept uses Sifteo cubes
[3, 4], a commercially available interactive game system
that provides a SDK to create custom applications. Our
interactive demonstration allows users to explore a dataset
(i.e., music library) by spatially arranging tangibles on an
interactive surface.

Figure 2: Spatial arrangement:
tokens can be placed side by side
to create combined queries.
(close-up) An icon highlights the
main token and active query.

Figure 3: Available values.
(↑ top) Users can selects facets,
such as title, artist, theme, or
year. (↓ bottom) Selection of
facet-specific values.

The general idea is to provide users with a set of tokens
(cf. [2]), i.e., tangibles representing individual search
parameters. A search parameter is defined as a facet (e.g.,
categorical, numeric) and one or more facet-specific
values. In contrast to Stackables [2], where tangibles are
vertically stacked, CubeQuery explores the spatial
alignment (side by side) of tokens.

CubeQueries: Design and Concept
The CubeQuery concept utilizes various features of a rich
interaction space. Based on the capabilities of the
deployed hardware, these features can be classified into
two categories: output attributes and input attributes.

Output Attributes. Output is provided both on the
interactive surface as well as on the tokens. While the
surface features visual and audio feedback, tokens use
visual output only. In terms of an application state, tokens
supply local (personalized) feedback, whereas surface
feedback represents both local and global.

Input Attributes. The interaction vocabulary develops
from the use of the interactive surface, tokens, and the
combination of the devices. The surface provides direct
touch input only, allowing users to tap, drag, or swipe
visuals. Since CubeQuery makes use of the full
functionality provided by the Sifteo cubes, features of

tokens directly correspond to the hardware capabilities.
Unique identifiers allow tokens to be distinguished.
Tokens can be tilted, flipped, and shaken by making use of
the build-in motion sensor. They also allow users to press
the display. Furthermore, tokens can be positioned on the
surface. This results in a token-specific location, i.e., a 2D
position and orientation. Finally, tokens can be placed
side by side relating to each of the four sides of a tangible
(see Figure 2). Considering the interactive surface, this
placement can be performed either off-screen or on-screen.

To explore a dataset, users can define search parameters
and logically combine them in queries, i.e., search
requests. A typical work flow of binding a search
parameter involves (1) assigning a facet to a token, (2)
selecting facet-specific values, (3) optionally combining
parameters by using logical operators, and (4) optionally
putting a request by activating the query. In this context,
CubeQuery enables users to perform various operations.

Facet selection. An individual search parameter related
to a specific facet can be bound to a specific token.
Initially, a token is unbound, i.e., neither a value nor a
facet is set up. If an unbound token is placed down on the
surface, the application shows available facets. Users can
select (bind) a facet by tapping it (see Figure 3 top). The
application shows corresponding facet values immediately
after a the selection of a facet (cf. value selection). To
unbind a token again, i.e., clear both the values and the
facet users simply grab and shake the tangible.

Value selection. Depending on the data type and value
range of a selected facet, users can choose single or
multiple values. Available values are shown right beside
(or around) the corresponding token (see Figure 3
bottom). Exactly like the facet selection, a single-value
selection requires the user to tap the specific value.



Tapping a value again allows users to undo the selection
(toggle behavior). Selecting several values in sequence

Figure 4: Multi-value selection.
(↑ top) Selection of individual
values separated from each other.
(↓ bottom) Selection of a
continuous value range.

Figure 5: (↑ top) Negation of a
search parameter.
(↓ bottom) Horizontal alignment
represents AND operator.

results in a multi-value selection. Such a selection can
represent both individual values separated from each other
as well as continuous value ranges (see Figure 4). The
selection of a continuous value range can be achieved in
various ways. CubeQuery allows a successive selection of
values step by step. Although this might be obvious, it is
not effective. Hence, our design considers the following
alternative methods: Either touching and swiping values
(uni-manual) or touching and holding the first value with
one finger and tapping the last value with another finger
(bi-manual), see Figure 4 bottom. Besides a common
value selection, users might want to exclude specific
values without selecting every other value. In contrast to
value selections involving touch input, a negation of
previously selected values can be achieved by physically
flipping a token back and forth. To both provide adequate
feedback and help users to identify such negated tokens,
the visual output is inverted, i.e., white text on dark
background (see Figure 5).

Activation. As the interactive surfaces shows the results
of one main search request (cf. visualization of query
results), one main token has to be declared. Only if a
main token is present a search query will be processed.
The main token can be set by pressing the display of the
token. A small icon visually highlights the main token (see
Figure 2 close-up).

Combining parameters. Multiple tokens can be
combined to formulate more complex queries. By placing
tokens side by side, users can combine search parameters
using simple boolean AND or OR operators. Here, the
alignment affects the boolean operator. Tokens need to
be combined horizontally to apply an AND operator (see

Figure 5 bottom). A vertical alignment results in a logical
OR combination. The order of execution of a combined
query is time-dependent, i.e., corresponds to the
chronological order of the token combinations. Again,
icons visualize the logical combination and indicate the
type of operator.

Visualization of Query Results
The result of a query is shown on the display of the
interactive surface. Similar to common media library
applications, the visualization is presented as a grid view
containing result elements (see Figure 1, 6). If the sample
space contains more elements than the grid view can
display, users can pan or swipe the grid view horizontally
to scroll. The grid visualization immediately responds to
query changes, e.g., adding or removing a token. This
way users can dynamically modify a query and explore a
dataset in an interactive way.

Figure 6: A grid view shows the result of a query. The
visualization immediately responds to query changes.

Implementation
CubeQuery makes use of the first version of the Sifteo
cubes [4] and a Microsoft Surface SUR40, a
touch-sensitive interactive tabletop. The cubes



communicate wirelessly via a proprietary 2.4GHz protocol
with the surface (host PC). To receive the location of a
token, each cube is tagged with a fiducial marker, i.e., a
4x4 cm infrared reflective marker with a unique 8-bit
identification pattern. The prototype consists of two
components. The first component, written in C# and
using the official Sifteo SDK, provides application logic
and a communication interface to the Sifteo cubes. The
second component, written in C# and using WPF,
features the grid visualization and handles touch and
marker input. Both components run on the host PC (i.e.,
Microsoft Surface SUR40) and communicate through a
TCP socket connection. The CubeQuery prototype
enables users to explore a musical dataset of approx. 600
songs [5] where users can select various facets, such as
theme, title, artist, and year.

Conclusion
We developed CubeQuery , a tangible user interface
providing a physical way to both create and manipulate
basic database queries. We wanted to ease the process of
faceted browsing and make information seeking more
effective. Unlike the majority of previous work, we utilized
active tangibles. With our CubeQuery prototype we
explore the practicality of creating simple boolean query
constructions by aligning these devices side by side.

Acknowledgements
We thank Mathias Frisch, Ulrike Kister, André Viergutz,
and Wolfgang Büschel for productive discussions and their
valuable feedback.

References
[1] Jetter, H.-C., Gerken, J., Zöllner, M., Reiterer, H.,

and Milic-Frayling, N. Materializing the query with
facet-streams: A hybrid surface for collaborative
search on tabletops. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’11, ACM (New York, NY, USA, 2011),
3013–3022.

[2] Klum, S., Isenberg, P., Langner, R., Fekete, J.-D., and
Dachselt, R. Stackables: Combining tangibles for
faceted browsing. In Proceedings of the International
Working Conference on Advanced Visual Interfaces,
AVI ’12, ACM (New York, NY, USA, 2012), 241–248.

[3] Merrill, D., Sun, E., and Kalanithi, J. Sifteo cubes. In
Proceedings of the 2012 ACM annual conference
extended abstracts on Human Factors in Computing
Systems Extended Abstracts, CHI EA ’12, ACM (New
York, NY, USA, 2012), 1015–1018.

[4] Sifteo, Inc. Sifteo cubes.
https://www.sifteo.com/cubes.

[5] The Guardian. The 1000 best songs ever.
https://opendata.socrata.com/dataset/1000-Songs/

y5f9-excn.
[6] Ullmer, B., Ishii, H., and Jacob, R. J. Tangible query

interfaces: Physically constrained tokens for
manipulating database queries. In Proceedings of the
INTERACT ’03, vol. 2003 (2003), 279–286.

[7] Valdes, C., Eastman, D., Grote, C., Thatte, S., Shaer,
O., Mazalek, A., Ullmer, B., and Konkel, M. K.
Exploring the design space of gestural interaction with
active tokens through user-defined gestures. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’14, ACM (New
York, NY, USA, 2014), 4107–4116.

https://www.sifteo.com/cubes
https://opendata.socrata.com/dataset/1000-Songs/y5f9-excn
https://opendata.socrata.com/dataset/1000-Songs/y5f9-excn

	Introduction
	CubeQueries: Design and Concept
	Visualization of Query Results

	Implementation
	Conclusion
	Acknowledgements
	References

