
The Concrete EVONNE: Visualization Meets
Concrete Domain Reasoning

Christian Alrabbaa1(B) , Franz Baader1(B) , Raimund Dachselt2(B) ,
Alisa Kovtunova1(B) , and Julián Méndez2(B)

1 Institute of Theoretical Computer Science, TU Dresden, Dresden, Germany
{christian.alrabbaa,franz.baader,alisa.kovtunova}@tu-dresden.de

2 Interactive Media Lab Dresden, TU Dresden, Dresden, Germany
{raimund.dachselt,julian.mendez2}@tu-dresden.de

Abstract. Evonne is a web application primarily designed to explain
Description Logic (DL) entailments using an interactive visualization
approach for proofs. This paper introduces an extension of Evonne
to DLs with concrete domains, which are needed for formalizing con-
cepts whose definitions involve quantitative information. Specifically, we
focus on two extensions of the DL EL⊥: one with constraints formu-
lated as linear equations and the other with difference constraints. First,
we have extended Evonne to enable the generation and presentation
of proofs involving these concrete domains. Then, leveraging the unique
properties of each domain, we have designed and incorporated alterna-
tive visual explanations for the numerical parts of the proofs. Finally,
we have assessed the effectiveness of these visual explanations through
qualitative user studies and a performance benchmark. While opinions
on one of these explanations varied, the other was widely recognized for
its clarity and ease of understanding.

Keywords: Explainable AI · Description Logic · Concrete Domains ·
Visualization · Linear Equations · Difference Constraints

1 Introduction

Due to the opacity of many machine learning approaches such as deep neural
networks [27], explainability (xAI) has become a major research field in Artificial
Intelligence [18, 19]. Symbolic AI approaches based on logic have the advantage
over subsymbolic approaches that they are explainable by design: a consequence
computed by an automated reasoner can in principle be explained using a proof,
which demonstrates how the consequence can be derived from given axioms
by applying simple inference rules, and the non-derivability of a statement can
(for some logics) be explained by showing a finite counter-interpretation, which
is a model of all axioms, but not of the non-derivable statement. However, to
leverage this advantage of logic-based approaches in practice, one must be able
to produce proofs (counter-interpretations) that are appropriate for explanation
purposes and present them in a comprehensible and cogent way.
c The Author(s) 2026
R. Thiemann and C. Weidenbach (Eds.): FroCoS 2025, LNAI 15979, pp. 3–21, 2026.
https://doi.org/10.1007/978-3-032-04167-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-04167-8_1&domain=pdf
http://orcid.org/0000-0002-2925-1765
http://orcid.org/0000-0002-4049-221X
http://orcid.org/0000-0002-2176-876X
http://orcid.org/0000-0001-9936-0943
http://orcid.org/0000-0003-1029-7656
https://doi.org/10.1007/978-3-032-04167-8_1

4 C. Alrabbaa et al.

In ongoing work, we address these issues in the context of Description Logics
(DLs) [12], which are a prominent family of logic-based knowledge representa-
tion languages frequently used to formalize ontologies for various application
domains. The computation of appropriate proofs and counter-interpretations
has been tackled in [3, 4] and [8, 9], respectively. Both means of explanation can
be presented in our interactive visualization tool Evonne 1[2, 23], but the proof-
presentation facilities are considerably more mature. Since the publication of the
Evonne system description [2] and a journal paper emphasizing its visualization
components [23], this tool has been extended by new features and the look and
feel of the system has been improved considerably.

Here we concentrate on the extension of the proof visualization facilities of
Evonne to DLs with so-called concrete domains [11, 22]. In particular, we con-
sider extensions of tractable DLs of the EL family [10] with two p-admissible
concrete domains based on rational numbers, one (.DQ,lin) that can use linear
equations to formulate constraints [13] and another (.DQ,diff) based on differ-
ence constraints [10]. Such numerical constraints turn out to be very useful for
describing concepts whose definition involves quantitative information, such as
the battery capacity of a drone, its flight time, and weather conditions including
temperature, which may influence the battery discharge rate. The exact defini-
tion of p-admissibility is not relevant for this paper (see [10, 13] for details), but
note that it is needed to preserve tractability. Both mentioned concrete domains
are p-admissible, but their combination is not, though they can both be inte-
grated into the same DL as long as they do not interact. In [5], we have addressed
the problem of generating proofs for consequences derived from knowledge bases
formulated in such DLs. Basically, the proof system for the extended DL as
introduced in [10] uses entailment between and unsatisfiability of sets of con-
crete domain constraints as applicability conditions. The idea is then to explain
the satisfaction of such side conditions by a proof of the entailment (unsatisfiabil-
ity) if this is requested by the user. The first important new feature of Evonne
described in this paper is the extension of its proof presentation facilities by such
concrete domain proofs and their interaction with the abstract DL proofs.

However, the most original contribution of this work lies in its introduction
of novel visual explanations for unsatisfiability and entailment in the consid-
ered numerical concrete domains. These visualizations are designed to reflect
the unique properties of the domains and offer more intuitive insight into the
underlying numerical reasoning. In the case of .DQ,lin, unsatisfiability of a set
of constraints using only two variables can be visualized in the 2D Euclidean
Space by showing that the lines corresponding to the constraints do not inter-
sect in a single point. Here, we address the challenge of extending this idea to
higher dimensions. For .DQ,diff, unsatisfiability of a constraint set corresponds
to the existence of a negative cycle in the difference graph induced by these
constraints. Thus, we developed a visual explanation based on such cycles. A
priori, it is not clear how these visual explanations compare to numerical proofs.

1 Evonne’s source code, documentation, and evaluation material (user studies, bench-
mark) are available at: https://imld.de/evonne.

https://imld.de/evonne
https://imld.de/evonne
https://imld.de/evonne
https://imld.de/evonne

The Concrete Evonne 5

For this reason, we conducted qualitative user studies to investigate the user
reception of these visualization techniques.

In summary, this paper presents the latest extension of Evonne, enabling
interactive visualization of proofs for DLs with concrete domains—crucial for
modeling concepts involving quantitative constraints. We contribute: (1) the first
proof visualization tool supporting DLs with linear equations and difference con-
straints, (2) novel domain-specific visual explanations tailored to enhance com-
prehension of numerical reasoning, and (3) empirical validation through user
studies and benchmarks, demonstrating the effectiveness of our approach. Our
assessments showed that the proposed visualizations supported users in under-
standing conclusions more effectively than when no explanation was provided.

2 Description Logics and Concrete Domains

In this section we recall the Description Logic EL⊥ [12], and its extension EL⊥[D]
with a concrete domain D [10]. We focus on two particular concrete domains
DQ,diff and DQ,lin [10, 13], both defined over the rational numbers . Q.

2.1 Concrete Domains

Concrete domains integrate reasoning about quantitative attributes of objects
into DLs [11, 13, 22]. Let NΠ be a set of concrete predicates, where every . Π ∈ NΠ

has arity .nΠ ∈ N. A concrete domain (CD) .D = (ΔD, ·D) over NΠ consists of a
set .ΔD and relations .ΠD ⊆ (ΔD)nΠ for all .Π ∈ NΠ. We assume that NΠ always
contains predicates . ⊥ and . , interpreted as .⊥D := ∅, and .

D := ΔD. Let NV be a
set of variables. A constraint .Π(x1, . . . , xnΠ

), with .Π ∈ NΠ and .x1, . . . , xnΠ
∈ NV,

is a predicate with variables as arguments. A constraint . α = Π(x1, . . . , xnΠ
)

is satisfied by an assignment .s : NV → ΔD if .(s(x1), . . . , s(xnΠ
)) ∈ ΠD. An

implication is of the form .C → α, where . C is a conjunction (set) of constraints.
The implication is valid if all assignments satisfying all constraints in . C also
satisfy . α. A conjunction . C of constraints is unsatisfiable iff .C → ⊥ is valid.

The CD DQ,diff contains predicates . , . ⊥, .x = q, .x > q, and .x + q = y, for
constants .q ∈ Q, with their natural semantics [10]. For instance, the constraint
.x + q = y is interpreted as .(x + q = y)DQ,diff = {(p, r) ∈ Q × Q | p + q = r}.

Example 1. Assume a delivery drone with .bp representing its current battery
percentage. The percentage is measured at multiple checkpoints, denoted as .bp0,
.bp1, .bp2, with constraints: .bp0 − 0.25 = bp1, bp1 − 0.2 = bp2, bp1 > 0.3 and
.bp2 > 0.25. If the initial percentage (.bp0) equals .0.65, then not all the constraints
hold, and the drone is not permitted to fly.

For DQ,lin, besides . and . ⊥, the predicates are given by linear equations
.

n
i=1 aixi = b, for .ai, b ∈ Q, with their natural semantics [13]. For instance,

.x + y − z = 0 is interpreted as .(x + y − z = 0)DQ,lin = {(p, q, s) ∈ Q3 | p + q = s}.

6 C. Alrabbaa et al.

Example 2. Assume .nr and .hr represent the average normal and high battery
discharge rates, respectively. Under normal conditions, the delivery drone can
fly for 8 hours on a single charge with a .30Ah battery, i.e., .8nr = 30. In cold
conditions, one hour of flight increases the battery consumption such that . 4nr+
hr = 30. Therefore, if a delivery requires at most 2 hours in cold temperatures,
the drone can complete it on a single charge.

2.2 Description Logics

DLs are decidable fragments of first-order logic (FOL) with a special, variable-
free syntax and use only unary and binary predicates, called concept names
and role names, respectively. These are used to build complex concepts, which
correspond to first-order formulas with one free variable, and axioms, which
correspond to first-order sentences. In this paper we consider the lightweight
DL EL⊥. We use the usual notion of entailment, denoted .O |= A B, where
Aand Bare concept names, and Ois a finite set of axioms, called an ontology. For
more details about the syntax and semantics of DLs, see [12].

The extension of EL⊥ with a concrete domain D, i.e., EL⊥[D], is obtained
by allowing constraints .α in D to be used as EL⊥ concepts. As in [5], we
use the notation .[α] to distinguish between constraints and classical concepts.
For instance, the statement that a delivery drone has a battery with a bat-
tery percentage greater than .0.25 can be expressed in an EL⊥[DQ,diff] axiom as
.DD has.(Battery [bp > 0.25]).

3 Combined Proofs

Evonne is a web application designed to explain DL entailments. It supports
multiple proof types [2] and enhances them with interactive visualizations, help-
ing users understand entailments and debug ontologies [23]. Proofs in Evonne
are generated using the Eveelibrary [7], and follow the notion introduced in [3]:
A proof Pof .O |= A B is a finite, acyclic, directed hypergraph, where each ver-
tex . v is labeled with an axiom . (v). Hyperedges are of the form .(S, d), where . S
is a set of vertices and . d is a vertex such that .{ (v) | v ∈ S} |= (d). The
leaf vertices of a proof are labeled with axioms from O, and the root with
.A B. Evonne visualizes the proof hypergraphs using tree structures. In this
paper, we extend Evonne’s proofs to cover combined proofs for EL⊥[DQ,diff] and
EL⊥[DQ,lin] entailments. The following example demonstrates the approach, as
introduced in [5].

Let .O = {A [α1], A [α2], A [α3], [β] B} be an ontology such that
.O |= A B. First, we identify the relevant constraints in O and establish impli-
cations between them in order to build the subsumption hierarchy of abstract
concepts. By using an appropriate CD reasoner, we test relevant implications
such as .{α1, α2} → β. The ontology is then extended with axioms that encode
all the valid relevant implications, i.e., .O = O∪{[α1] [α2] [β], . . .}. By classi-
fying .O we obtain .O |= A B. Lastly, by integrating the proof of .{α1, α2} → β

The Concrete Evonne 7

in the proof of .O |= A B as a proof for .[α1] [α2] [β], we obtain the combined
proof for .O |= A B.

Example 3. Consider the delivery drone (.DD) from Example 2, along with the
concept name large battery drone (.LBD). Additionally, assume the following
information is given. First, if operating at a high discharge rate for two hours
draws .30Ah, this implies that a drone has a large battery, i.e., .[2hr = 30] LBD.
Second, the delivery drone satisfies the constraints shown in Example 2, i.e.,
.DD [8nr = 30] [4nr + hr = 30]. From these two axioms, it follows that the
delivery drone is a large battery drone, i.e., .DD LBD. An explanation of this
conclusion is provided by the combined proof shown in Fig. 1a, where the proof
in Fig. 1b shows the inferences at the level of equations.

To complete the picture of how concrete domain-dependent entailments are
proven, we now describe the procedures that handle the CD reasoning steps.

Reasoning in DQ,lin . Deciding the validity of .C → β is achieved by identify-
ing linear combinations that allow . β to be derived from the equations in C. For
instance, the implication .{8nr = 30, 4nr + hr = 30} → hr = 15 can be shown
by multiplying .8nr = 30 by .− 1

2 and adding it to .4nr + hr = 30. Similarly, the
unsatisfiability of a system of equations can be shown by providing a linear com-
bination that results in the derivation of .0 = c, where .c = 0. In [5], determining
the coefficients for the linear combinations is achieved using Gaussian Elimina-
tion, and these coefficients are used to build the inferences that constitute the
proof. An example of a DQ,lin proof in Evonne is shown in Fig. 1b

Reasoning in DQ,diff . Unlike the reasoning process in DQ,lin, deciding the
validity of .C → β is based on the saturation of DQ,diff constraints, using the
rules shown in [5, Fig. 1]. Thus, checking whether .C → β is valid is done by
checking if the implication is present in the result of the saturation. In addition,
if . β is of the form .x > q, then the implication is valid if either (i) .x = q where
.q > q or (ii) .x > q where .q ≥ q are derived with the saturation rules. A proof
of DQ,diff entailment is thus built using the instantiations of saturation rules
directly. An example of such a proof in Evonne is shown in Fig. 1c

Combined proofs do not depend on the nature of the domains, making them
versatile explanations that can be applied to various logics and concrete domains.
However, their level of detail can result in large structures with potentially com-
plicated inferences. For instance, the more variables and constraints involved
in an entailment, the larger the resulting proof. To address this, we introduce
alternative visual explanations, which we discuss in Sect. 4.

4 Domain-Specific Visualizations

In this section, we introduce two alternative visual explanations that leverage the
specific characteristics of each concrete domain to present numerical entailments
differently. These explanations do not rely on the DL part of the ontology, making
them applicable to other logics or formalisms that incorporate these domains.

8 C. Alrabbaa et al.

Fig. 1. Examples of proofs in Evonne.

4.1 Explanations of DQ,lin Entailments

Let . β be a linear equation, and C be a set of linear equations such that . C →
β. The implication means that every assignment satisfying all the constraints
in C, i.e., every solution, also satisfies . β. A proof explains the implication by
showing how the conclusion . β is derived from equations in C, i.e., showing that
all solutions to C are also solutions to . β. Hence, a compact representation showing
every solution to C is a solution to . β offers an alternative way to explain the
implication.

If we consider systems of linear equations with at most two variables, which
are shared across all equations (e.g., .{α1, . . . , αn, β}), then we can use lines in the
2D Euclidean Space to achieve a compact representation of all solutions to the
equations, as each solution corresponds to a point in the 2D space. For example,
assume .{α1, . . . , αn} → β. If .β = ⊥, this means that the system .{α1, . . . , αn} has
no solutions. In other words, the lines corresponding to .α1, . . . , αn neither inter-
sect at a single point nor overlap. On the other hand, if .β = ⊥ and . {α1, . . . , αn}
is satisfiable, then the system .{α1, . . . , αn, β} either has a unique solution, i.e.,
exactly one point where all the lines intersect, or infinitely many solutions, i.e.,
all lines overlap. Therefore, by demonstrating the existence or absence of such
intersections, we can explain entailments effectively.

Using dimensionality reduction, we can apply the same idea to equations with
more than two variables. While there are multiple ways to achieve dimensionality
reduction [15], we utilize the solution space of a system of equations to project the
.n-dimensional equations to 2D. Let C be a set of equations where .C → β, let . s be
a solution to C, and let . x and . y be any two variables appearing in . β. By replacing
all the variables, except . x and . y, in all equations with their corresponding values
in . s, we obtain equations involving at most two variables. The resulting equations
can be viewed as a snapshot of C with respect to . s, focusing on . x and . y. Therefore,
in a plane defined by . x and . y, and since . s is a solution, all the lines must intersect.
Hence, we can explain .C → β by showing that for every solution . s and every plane

The Concrete Evonne 9

Fig. 2. DQ,lin implication of .3x1 − 3x2 − x3 + 3x4 = 7 in Evonne.

defined by . x and . y, the intersection of all the lines of C is the same intersection
of the line corresponding to . β and the lines of C.

To explain unsatisfiability, we can use a similar approach. If .C → ⊥, then
there must be a contradiction in C. More specifically, at least two contradictory
equations must be derivable from C, i.e., equations of the form .X = q and
.X = p, where .X is a sum of terms and .p, q ∈ Q, .q = p. Thus, in any 2D plane
defined by variables appearing in C, with at least one variable appearing in . X,
the lines corresponding to .X = q and .X = p do not intersect. Consequently, in
a plane where all the equations in C needed to derive .X = q and .X = p can be
plotted, these lines must also not intersect. Therefore, we can explain . C → ⊥
by highlighting these contradictory equations in C and showing that their lines
never intersect, regardless of variable assignments.

Figures 2 and 3 show examples of DQ,lin explanations in Evonne. The sys-
tem of equations is shown in the top left. Hovering over an equation highlights
its corresponding line in the 2D plot, and vice versa, helping users connect the
algebraic and geometric views of the constraints. In Fig. 2 the top right dis-
plays an instantiation of the system’s solution based on the chosen value for
the free variable. Since this system has one degree of freedom, setting . x4 = 0
uniquely determines the remaining variables. Hovering over the question mark
icon reveals the solution without the variable assignment. In contrast, in Fig. 3,
the top right shows the system of equations with respect to the currently chosen
variable assignment. Additionally, users can manipulate the visualization directly
by switching between different planes and assigning values to (free) variables
using the controls beside the plot. In the case of unsatisfiability, the visualiza-
tion makes contradictions immediately apparent: if a user assigns a value that
causes an equation to evaluate to .p = q with .p = q, then this inconsistency is
highlighted in red, as illustrated by .3 = 0 in Fig. 3.

10 C. Alrabbaa et al.

Fig. 3. DQlin implication of .⊥ in Evonne

4.2 Explanations of DQ,diff Entailments

It is well established that difference constraints (i.e., .x−y ≤ q) can be represented
as graphs such that every variable corresponds to a vertex and every constraint
to a weighted edge [14]. Given a set of difference constraints, deciding whether
it is unsatisfiable can be reduced to finding a simple cycle in the corresponding
graph with a negative weight [14]. Therefore, we use graphs and negative cycles to
explain implications in DQ,diff. However, since predicates in DQ,diff express more
types of constraints, we first need to introduce some necessary transformations.

Let C be a set of difference constraints. A difference graph is a weighted
directed graph .G = (V,E), where each variable .xi in C corresponds to a vertex
.vi ∈ V , and each constraint .xj − xi ≤ qij corresponds to an edge . (vi, vj) ∈ E
with weight .qij ∈ Q. A path .π(v, u) from . v to . u is a sequence of edges:

. v
q0−→ v1

q1−→ v2 . . . vn
qn−→ u,

with weight .πw(v, u) = q0 + q1 + . . . + qn. A path is simple if all vertices, with
the possible exception of . v and . u, are distinct. A negative cycle is a simple path
.π(v, v) where .πw(v, v) < 0. A set of difference constraints is unsatisfiable iff the
corresponding difference graph contains a negative cycle ([14, Theorem 24.9]).

Constraints in DQ,diff of the form .y−x = q can be rewritten as two difference
constraints: .y−x ≤ q and .x−y ≤ −q. Additionally, the unary DQ,diff constraints,
i.e., constraints of the form . , where . ∈ {=, >}, can be represented as
.x − z0 where .z0 is a fresh variable. This formulation is sound because .
is satisfiable iff .{x − z0 0 = 0} is satisfiable ([14, Lemma 24.8]).

Lastly, we rewrite .x − z0 > q as .z0 − x ≤ −q − , where . is a placeholder
for some small positive value. This rewriting is sound for the following reason:

The Concrete Evonne 11

Fig. 4. Example of an explanation for DQ,diff implications in Evonne.

If C is satisfiable and .C ∪ {x − z0 > q} is unsatisfiable, then for any positive
.e ∈ Q, the constraints .C ∪ {x − z0 ≥ q + e} are also unsatisfiable, which is
equivalent to .C ∪ {z0 − x ≤ −q − e}. Meanwhile, for any assignment satisfying
.C ∪ {x − z0 > q}, there exists a positive .e ∈ Q such that the same assignment
also satisfies .x − z0 ≥ q + e > q. Thus, .C ∪ {z0 − x ≤ −q − e} is also satisfiable.
Since such a small positive rational number . e can always be found, we use .
symbolically as a reference to . e whenever we need to transform a constraint
with a .>-predicate, rather than computing the specific value . e for each set of
constraints.

Consequently, we can represent any set C of DQ,diff constraints as a difference
graph, and if .C → ⊥, we can explain the contradiction in C by identifying the
negative cycle in the graph. However, if C is satisfiable and .C → β, an additional
step is required. In particular, we can explain that C implies . β by showing that
.C ∪ {¬β} → ⊥, which allows us to effectively use the notion of negative cycles
to explain the implication. If . β is of the form .x > q, then the negative cycle
in the difference graph corresponding to .C ∪ {x − z0 ≤ q} shows that whenever
an assignment satisfies all the constraints in C, the value of . x must be greater
than . q. If . β is of the form .x + y = q, then .x + y = q is transformed into
.x − y ≤ q − ∨∨∨ y − x ≤ −q − , leading to two negative cycles in the graph
corresponding to .C ∪ {x − y = q}. These cycles explain .C → x − y = q by
demonstrating that no satisfying assignment for C exists unless .x − y = q holds.

Figure 4 shows an example of a negative cycle in Evonne. Hovering over a
constraint highlights its corresponding edge(s) in the graph, and vice versa. The
dotted edges represent the negated conclusion. Furthermore, the negative cycle
is animated, allowing users to visually follow its progression. This animation
can be triggered by clicking on a vertex or a constraint; the clicked element
then determines the starting point of the animation in the graph. Additionally,

12 C. Alrabbaa et al.

Fig. 5. Popover for specifying new project information in Evonne.

users have access to a feature that lets them assign concrete values to variables
by double-clicking on them. These values are then automatically propagated
along the negative cycle, allowing users to observe how the set of constraints
behaves under such assignments. In particular, this makes it possible to see
exactly how the cycle leads to logical inconsistencies, which are highlighted in
red. An example of such a contradiction is .x3 = 3 ≤ 3 − , as shown in Fig. 4.

5 Numerical Explanations in EVONNE

The first step to using Evonne to generate CD explanations is to create a new
project. As shown in Fig. 5, users must first specify which reasoner they would
like to use—which, in our case, is the CD reasoner. This selection prompts the
user to choose one of the two supported domains. Since the OWL 2 standard [28]
does not support all predicate types used in our concrete domains, Evonne
requires the user to provide two files for an ontology: one text file that contains
the CD constraints of the ontology, and one OWL file that contains the DL
part. Once the files are loaded, the user is asked to provide an axiom (concept
inclusion) that they would like to have proven. If proving this axiom depends on
the concrete domain part of the ontology, then a combined proof is generated
and displayed.

By default, all numerical subproofs within a combined proof are collapsed
into single inferences. Each of these inferences is labeled with a unique rule
identifier—for example, the label CDP1 used in the proof shown in Fig. 1a—
which allows for a more compact presentation of the proof. However, users can
expand these subproofs to reveal all intermediate inferences. The visual expla-
nations are accessible by clicking the labels of the numerical subproofs, which
appear as popovers, as shown in Figs. 2, 3, and 4). It is worth noting that visual

The Concrete Evonne 13

explanations rely only on the constraints within the corresponding subproofs
and do not use additional constraints from the ontology.

The CD explanations in Evonne use function-plot and cytoscape.js to render
the 2D plots and difference graphs, respectively. To handle numerical precision
in JavaScript, we represent rational numbers as fractions, using Fraction.js. We
implemented a Gaussian elimination solver for evaluating DQ,lin equations, and
a Hamiltonian cycle detector for animating the negative cycles. In our difference
graphs, a negative-weight Hamiltonian cycle is guaranteed. This is because our
graphs are based on minimal proofs, ensuring that (i) all necessary constraints for
constructing the negative cycle are present, and (ii) no constraint is superfluous,
as the proof’s leaf constraints correspond to a justification, i.e., a minimal set of
constraints entailing the proof’s root constraint [3].

The current version of Evonne is accessible through https://imld.de/evonne,
where all the examples used in the user studies (Sect. 6.1) and the benchmark
(Sect. 6.2) are listed under the Play Around tab of Evonne.

6 Evaluation

We conducted two experiments to evaluate different aspects of our approach.
The first experiment consists of user studies that assess the effectiveness of the
numerical explanations in terms of user understanding and perceived helpfulness.
The second experiment is a benchmark that evaluates the efficiency of rendering
these explanations.

6.1 User Studies

To assess the CD explanations we conducted two qualitative studies—one for
DQ,diff and the other for DQ,lin—using online structured interviews. Both stud-
ies compared the classical proofs (e.g., Figs. 1b, and 1c) with their respective
alternative CD explanation (e.g., Figs. 2, 3, 4). The goal was to compare the
effectiveness of the explanations and collect feedback to improve them.

To ensure adherence to best scientific practices, we preregistered the studies.
The preregistration, an extended report, and detailed user feedback are available
online [20].

Study Design. We employed a 2x2 factorial design with two independent vari-
ables: representation (i.e., plot/cycle or proof), and task type (i.e., unsat-
ifiability or entailment). The task type condition was necessary due to slight
differences in plot and cycle representations between cases. Within each domain,
four visual explanations of comparable difficulty were created with Evonne.
Each task in DQ,lin involved 3–4 linear equations and, for DQ,diff, 4–6 differ-
ence constraints. We used a within-subjects design with a randomized order:
all participants experienced all conditions and examples. The dependent vari-
ables included ease of use (measured using Single Ease Question, SEQ [24]),
user experience (assessed with User Experience Questionnaire, UEQ-S [21, 26]),

https://mauriciopoppe.github.io/function-plot/
https://js.cytoscape.org/
https://github.com/rawify/Fraction.js
https://imld.de/evonne

14 C. Alrabbaa et al.

Fig. 6. Distribution of SEQ responses in DQ,diff: X-axis represents how difficult it was
to understand an explanation, and Y-axis indicates the number of participants who
selected each class.

and subjective preference. These dependent variables are interrelated. As demon-
strated further, subjective preferences consistently aligned with the results from
SEQ and UEQ-S, reinforcing the validity of our findings. The online surveys were
hosted on LimeSurvey [1] and included an introductory video for each domain.
The DQ,diff study averaged just 35 minutes, whereas the DQ,lin study required
an average of 50 minutes.

We recruited eleven participants (2 female, 9 male), aged 18–44, from among
colleagues familiar with logic and linear algebra, of whom seven were Ph.D.s,
two M.Sc.s, and one B.Sc. Participants were informed about the objective of the
studies and consented to the use of anonymous data for scientific purposes.

Results for DQ,diff . First, SEQ shows how difficult the explanation is to under-
stand on a Likert scale from 1 “very difficult” to 7 “very easy”. Figure 6 demon-
strates the following findings: For an entailment task, cycles and proofs received
similar evaluations (cycles: average 5.6, sd. = 0.9; proofs: average 5.8, sd. =
1.2, respectively). However, for unsatisfiability, cycles received an average score
of 6, sd. = 0.8, and were unanimously perceived as more intuitive than proofs
(average 5, sd. = 1.3).

In addition to SEQ, participants briefly explained why they found a task diffi-
cult. They generally found cycles and their animations clear and understandable,
particularly because the visualization automated calculations, highlighted nega-
tive cycles, and helped relate edges to constraints. However, a few participants
noted that understanding the interface and interpreting the information required
some initial effort, explanations, and practice, as in “It took me a moment to
understand the tool. Once I was given the explanation, I could understand how it
works”. On the other hand, proofs were perceived slightly less positively. While
participants appreciated the ability to inspect inference steps, clearly identify
which equations to combine, and the simplicity of step verification, they also
noted some challenges. These included uninformative or redundant information
(e.g., repetitive left-hand sides of axioms and overly lengthy node labels), the
need for manual calculations, and difficulties with the semantics of edge opera-

The Concrete Evonne 15

Fig. 7. DQ,lin proof (in blue), plot (in cyan), DQ,diff proof (in white), and cycle (in gray)
UEQ-S scores, their interpretation, and confidence intervals. (Color figure online)

tions. For instance, a participant remarked: “Proofs take a lot of space, and the
edge labelings are unfamiliar”.

Overall, both methods were well received, with participants appreciating
their different strengths. As one participant summarized: “A positive implica-
tion is actually very well represented in a proof. Cycle highlighting, hovering and
animation are super cool”.

Next, we assessed the user experience using the UEQ-S [25], by calculat-
ing pragmatic and hedonic quality scores. Pragmatic usability focuses on the
task-oriented nature of an experience, whereas hedonic usability reflects non-
utilitarian aspects such as appeal, originality, and joy of use. The white and
gray bars in Fig. 7 correspond to the following results: Proofs received an “above
average” rating across all qualities, with scores of .1.364 (pragmatic quality, e.g.,
usability and functionality), . 1 (hedonic quality, e.g., enjoyment and stimulation),
and .1.182 (overall quality). In contrast, cycles were rated as “excellent” in all
three categories, with scores of .1.795 (pragmatic), .1.727 (hedonic), and . 1.761
(overall).

After each task, participants were asked whether the explanation service was
useful for understanding. All but one participant responded “yes” across both
task types and both representations. The outlier cited confusion related to the
naming of proof edges.

Finally, in the post-test assessment in DQ,diff, most participants preferred
cycles (8 vs. 2 for proofs, 1 for both). This preference grew stronger with more
constraints (9 vs. 2 for proofs).

16 C. Alrabbaa et al.

Fig. 8. Distribution of SEQ responses in DQ,lin: The X-axis represents how difficult it
was to understand an explanation, and the Y-axis indicates the number of participants
who selected each class.

Results for DQ,lin . Regarding SEQ, Fig. 8 demonstrates that, across both task
types—unsatisfiability and entailment—plots (with average scores of 4.7, sd. =
2.2, and 3.9, sd. = 1.8, respectively) were perceived as less intuitive than proofs
(with average scores of 5.3, sd. = 1.2, and 4.8, sd. = 1.5, respectively). In the
case of plots, participants found them useful and enjoyable but also cognitively
demanding to combine and interpret multiple variables displayed simultaneously,
in particular when dealing with a higher number of dimensions. A respondent
highlighted this point: “The projection made me think that the solution was a
point at first, before I realized that the solution is higher dimensional”. Unsatis-
fiability tasks are perceived slightly easier than the entailment ones. Over time,
familiarity with the visualization also improved, aided by provided instructions.
For proofs, some participants found the step-by-step approach helpful, as it made
the task easier to follow and verify compared to plots. They appreciated the
ability to trace each step and felt confident in the overall result due to its clear
mathematical foundation. However, the mental calculations required for veri-
fying were quite challenging, as one participant noted: “For proofs, I like that
they show each individual step, but I did not figure out the solution myself from
proofs, instead I trusted the system”. Many participants found the notation less
accessible, in particular: “Too many symbols and too long node labels so it was
hard to parse”.

With respect to user experience, the blue and cyan bars in Fig. 7 illustrate the
following findings: Proofs received an overall rating of “above average” (.1.159).
Specifically, they scored “above average” (.1.523) for pragmatic qualities (e.g.,
usability and functionality) but “below average” (.0.795) for hedonic qualities
(e.g., enjoyment and stimulation). In contrast, plots were rated overall as “below
average” (.0.795). They scored “bad” (.0.568) for pragmatic qualities but achieved
an “above average” (.1.023) rating for hedonic qualities.

After each task, we asked if the explanation was helpful. For proofs, the
response was unanimously positive across both task types. Feedback on plots

The Concrete Evonne 17

varied: for unsatisfiability, 10 said “yes” and 1 was “not sure”; for entailment, 6
said “yes”, 4 were “not sure”, and 1 said “no”.

Subjectively, most participants preferred proofs (8 vs. 2 for plots, 1 for both).
However, when linear equations involved only 2–3 variables, preference shifted
to plots (8 vs. 3 for proofs).

Discussion. The user studies demonstrate that concrete domain-specific visu-
alizations can significantly enhance the understanding of numerical reasoning,
especially in the case of DQ,diff, where animated cycles were preferred for their
clarity and intuitiveness. While proof trees were appreciated for their struc-
ture and detail, the choice between concrete domain visualizations and proofs
appears task-dependent and influenced by numerical complexity. For simpler
DQ,lin entailments involving few variables, users preferred plots; however, for
more complex cases and even with the added cognitive load, proofs were still
preferred, as they were perceived as more trustworthy. These insights sug-
gest that offering multiple, complementary explanation forms—proofs and CD
visualizations—can accommodate diverse user preferences and experience lev-
els. Future iterations of Evonne could build on this by incorporating adaptive
explanation strategies based on characteristics of entailments or user feedback.
Additionally, enabling users to adjust the existing visual explanations—or even
extend them with user-defined visualizations, as supported by systems like Ster-
ling [17]—could further accommodate individual preferences.

6.2 Performance Benchmark

We measured the response times for rendering the concrete domain explanations
using combined proofs from the dataset provided in [5]. To automate the pro-
cess, we used cypress.io, a testing framework, to load these proofs and open the
corresponding CD explanations. Since the goal of the benchmark is to assess the
rendering overhead introduced by the visual explanations, we do not measure
the time required to compute the combined proofs, as this has already been
reported in [6].

On average, response times were 18.32 ms for DQ,lin and 8.7 ms for DQ,diff.
The slowest times were 180.4 ms for DQ,lin and 124.8 ms for DQ,diff, which
correspond to large proofs that push the browser’s resources considerably. These
higher initial times occur when a CD explanation is opened for the first time,
as the required HTML DOM elements are created and the relevant libraries
are loaded. However, subsequent renders within the same proof are significantly
faster. In the slowest cases, follow-up renders took 44.4 ms in DQ,lin and 9.3
ms in DQ,diff. Note that all response times are within the 200ms threshold for
perceived responsiveness [16].

7 Conclusion

We have extended Evonne to generate and present proofs for EL⊥[DQ,diff] and
EL⊥[DQ,lin]. Additionally, we have designed and developed alternative visual

https://cypress.io

18 C. Alrabbaa et al.

explanations for numerical entailments, taking into account the characteristics
of each concrete domain. Specifically, we illustrate DQ,diff entailments using neg-
ative cycles and DQ,lin entailments with 2D plots. These visual explanations are
specific to the concrete domain yet independent of the underlying logic, mak-
ing them adaptable and applicable to other formalisms. Furthermore, the visual
display of the CD explanations scales better than that of the combined proofs.
For instance, in the case of DQ,lin, adding more constraints simply results in
additional lines in a 2D plot, without significantly affecting the overall layout. In
contrast, increasing the number of equations in a proof expands the entire proof
structure, which can make navigation more difficult due to increased scrolling
and zooming.

We conducted qualitative user studies to assess the effectiveness of numerical
explanations in Evonne. For DQ,lin, participants’ opinions varied, though most
alluded to a trust factor favoring proofs over visual explanations, suggesting
that, in this case, such visual explanations might not be necessary. In contrast, for
DQ,diff, participants highly valued the clarity and ease of understanding provided
by the animated cycles, making them a more preferred form of explanation.

As future work, we plan to address issues raised by the participants’ feed-
back on both proofs and the visual CD explanations. Additionally, we will
refine Evonne’s capabilities for explaining non-consequences through counter-
interpretations and extend them to support DLs with concrete domains.

Acknowledgments. This work is funded by Deutsche Forschungsgemeinschaft (DFG)
under Germany’s Excellence Strategy: EXC 2050/1, 390696704 – “Centre for Tac-
tile Internet” (CeTI); by DFG grant 389792660 as part of TRR 248 – CPEC, see
https://perspicuous-computing.science; and by Bundesministerium für Bildung und
Forschung (BMBF) and Saxon State Ministry for Science, Culture and Tourism
(SMWK) in Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI,
SCADS22B). The authors extend gratitude to Dr. Ida Sri Rejeki Siahaan and Nicolás
Rojas for their support in the early design and implementation of CD visualizations.

References

1. Der Umfragedienst für sächsische Hochschulen und Berufsakademien. https://
bildungsportal.sachsen.de/umfragen/

2. Alrabbaa, C., Baader, F., Borgwardt, S., Dachselt, R., Koopmann, P., Méndez,
J.: Evonne: interactive proof visualization for description logics (system descrip-
tion). In: Automated Reasoning - 11th International Joint Conference, IJCAR
2022, Proceedings. Lecture Notes in Computer Science, vol. 13385, pp. 271–280.
Springer (2022). https://doi.org/10.1007/978-3-031-10769-6_16

3. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Finding
small proofs for description logic entailments: theory and practice. In: LPAR 2020:
23rd International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, Alicante, Spain, May 22-27, 2020. EPiC Series in Computing, vol. 73,
pp. 32–67. EasyChair (2020). https://doi.org/10.29007/NHPP

https://perspicuous-computing.science
https://perspicuous-computing.science
https://perspicuous-computing.science
https://perspicuous-computing.science
https://www.scads.de
https://bildungsportal.sachsen.de/umfragen/
https://bildungsportal.sachsen.de/umfragen/
https://bildungsportal.sachsen.de/umfragen/
https://bildungsportal.sachsen.de/umfragen/
https://bildungsportal.sachsen.de/umfragen/
https://doi.org/10.1007/978-3-031-10769-6_16
https://doi.org/10.1007/978-3-031-10769-6_16
https://doi.org/10.1007/978-3-031-10769-6_16
https://doi.org/10.1007/978-3-031-10769-6_16
https://doi.org/10.1007/978-3-031-10769-6_16
https://doi.org/10.1007/978-3-031-10769-6_16
https://doi.org/10.1007/978-3-031-10769-6_16
https://doi.org/10.1007/978-3-031-10769-6_16
https://doi.org/10.1007/978-3-031-10769-6_16
https://doi.org/10.1007/978-3-031-10769-6_16
https://doi.org/10.29007/NHPP
https://doi.org/10.29007/NHPP
https://doi.org/10.29007/NHPP
https://doi.org/10.29007/NHPP
https://doi.org/10.29007/NHPP
https://doi.org/10.29007/NHPP

The Concrete Evonne 19

4. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Finding
good proofs for description logic entailments using recursive quality measures. In:
Automated Deduction - CADE 28 - 28th International Conference on Automated
Deduction 2021, Proceedings. Lecture Notes in Computer Science, vol. 12699, pp.
291–308. Springer (2021). https://doi.org/10.1007/978-3-030-79876-5_17

5. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Combining
proofs for description logic and concrete domain reasoning. In: Rules and Reason-
ing - 7th International Joint Conference, RuleML+RR 2023, Proceedings. Lecture
Notes in Computer Science, vol. 14244, pp. 54–69. Springer (2023). https://doi.
org/10.1007/978-3-031-45072-3_4

6. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Combin-
ing proofs for description logic and concrete domain reasoning (technical report)
(2023). https://arxiv.org/abs/2308.03705

7. Alrabbaa, C., et al.: Explaining reasoning results for OWL ontologies with Evee.
In: Proceedings of the 21st International Conference on Principles of Knowledge
Representation and Reasoning, KR 2024, Hanoi, Vietnam. November 2-8, 2024
(2024). https://doi.org/10.24963/KR.2024/67

8. Alrabbaa, C., Hieke, W.: Explaining non-entailment by model transformation for
the description logic .EL. In: Proceedings of the 11th International Joint Conference
on Knowledge Graphs, IJCKG 2022, pp. 1–9. ACM (2022). https://doi.org/10.
1145/3579051.3579060

9. Alrabbaa, C., Hieke, W., Turhan, A.: Counter model transformation for explain-
ing non-subsumption in .EL. In: Proceedings of the 7th Workshop on Formal and
Cognitive Reasoning co-located with the 44th German Conference on Artificial
Intelligence (KI 2021). CEUR Workshop Proceedings, vol. 2961, pp. 9–22. CEUR-
WS.org (2021). https://ceur-ws.org/Vol-2961/paper_2.pdf

10. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI-05, Proceed-
ings of the Nineteenth International Joint Conference on Artificial Intelligence,
Edinburgh, Scotland, UK, July 30 - August 5, 2005. pp. 364–369. Professional
Book Center (2005). http://ijcai.org/Proceedings/05/Papers/0372.pdf

11. Baader, F., Hanschke, P.: A scheme for integrating concrete domains into concept
languages. In: Proceedings of the 12th International Joint Conference on Artificial
Intelligence. Sydney, Australia, August 24-30, 1991, pp. 452–457. Morgan Kauf-
mann (1991). http://ijcai.org/Proceedings/91-1/Papers/070.pdf

12. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge Univ. Press (2017). https://doi.org/10.1017/9781139025355

13. Baader, F., Rydval, J.: Using model theory to find decidable and tractable descrip-
tion logics with concrete domains. J. Autom. Reason. 66(3), 357–407 (2022).
https://doi.org/10.1007/s10817-022-09626-2

14. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, third
edition. Computer science, MIT Press (2009). https://books.google.de/books?
id=i-bUBQAAQBAJ

15. Cunningham, J.P., Ghahramani, Z.: Linear dimensionality reduction: survey,
insights, and generalizations. J. Mach. Learn. Res. 16, 2859–2900 (2015). https://
doi.org/10.5555/2789272.2912091

16. Dabrowski, J.R., Munson, E.V.: Is 100 milliseconds too fast? In: CHI 2001
Extended Abstracts on Human Factors in Computing Systems, CHI Extended
Abstracts 2001, Seattle, Washington, USA, March 31 - April 5, 2001. pp. 317–318.
ACM (2001). https://doi.org/10.1145/634067.634255

https://doi.org/10.1007/978-3-030-79876-5_17
https://doi.org/10.1007/978-3-030-79876-5_17
https://doi.org/10.1007/978-3-030-79876-5_17
https://doi.org/10.1007/978-3-030-79876-5_17
https://doi.org/10.1007/978-3-030-79876-5_17
https://doi.org/10.1007/978-3-030-79876-5_17
https://doi.org/10.1007/978-3-030-79876-5_17
https://doi.org/10.1007/978-3-030-79876-5_17
https://doi.org/10.1007/978-3-030-79876-5_17
https://doi.org/10.1007/978-3-030-79876-5_17
https://doi.org/10.1007/978-3-031-45072-3_4
https://doi.org/10.1007/978-3-031-45072-3_4
https://doi.org/10.1007/978-3-031-45072-3_4
https://doi.org/10.1007/978-3-031-45072-3_4
https://doi.org/10.1007/978-3-031-45072-3_4
https://doi.org/10.1007/978-3-031-45072-3_4
https://doi.org/10.1007/978-3-031-45072-3_4
https://doi.org/10.1007/978-3-031-45072-3_4
https://doi.org/10.1007/978-3-031-45072-3_4
https://doi.org/10.1007/978-3-031-45072-3_4
https://arxiv.org/abs/2308.03705
https://arxiv.org/abs/2308.03705
https://arxiv.org/abs/2308.03705
https://arxiv.org/abs/2308.03705
https://arxiv.org/abs/2308.03705
https://arxiv.org/abs/2308.03705
https://doi.org/10.24963/KR.2024/67
https://doi.org/10.24963/KR.2024/67
https://doi.org/10.24963/KR.2024/67
https://doi.org/10.24963/KR.2024/67
https://doi.org/10.24963/KR.2024/67
https://doi.org/10.24963/KR.2024/67
https://doi.org/10.24963/KR.2024/67
https://doi.org/10.24963/KR.2024/67
https://doi.org/10.1145/3579051.3579060
https://doi.org/10.1145/3579051.3579060
https://doi.org/10.1145/3579051.3579060
https://doi.org/10.1145/3579051.3579060
https://doi.org/10.1145/3579051.3579060
https://doi.org/10.1145/3579051.3579060
https://doi.org/10.1145/3579051.3579060
https://ceur-ws.org/Vol-2961/paper_2.pdf
https://ceur-ws.org/Vol-2961/paper_2.pdf
https://ceur-ws.org/Vol-2961/paper_2.pdf
https://ceur-ws.org/Vol-2961/paper_2.pdf
https://ceur-ws.org/Vol-2961/paper_2.pdf
https://ceur-ws.org/Vol-2961/paper_2.pdf
https://ceur-ws.org/Vol-2961/paper_2.pdf
https://ceur-ws.org/Vol-2961/paper_2.pdf
https://ceur-ws.org/Vol-2961/paper_2.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/91-1/Papers/070.pdf
http://ijcai.org/Proceedings/91-1/Papers/070.pdf
http://ijcai.org/Proceedings/91-1/Papers/070.pdf
http://ijcai.org/Proceedings/91-1/Papers/070.pdf
http://ijcai.org/Proceedings/91-1/Papers/070.pdf
http://ijcai.org/Proceedings/91-1/Papers/070.pdf
http://ijcai.org/Proceedings/91-1/Papers/070.pdf
http://ijcai.org/Proceedings/91-1/Papers/070.pdf
http://ijcai.org/Proceedings/91-1/Papers/070.pdf
https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
https://doi.org/10.1007/s10817-022-09626-2
https://doi.org/10.1007/s10817-022-09626-2
https://doi.org/10.1007/s10817-022-09626-2
https://doi.org/10.1007/s10817-022-09626-2
https://doi.org/10.1007/s10817-022-09626-2
https://doi.org/10.1007/s10817-022-09626-2
https://doi.org/10.1007/s10817-022-09626-2
https://doi.org/10.1007/s10817-022-09626-2
https://doi.org/10.1007/s10817-022-09626-2
https://books.google.de/books?id=i-bUBQAAQBAJ
https://books.google.de/books?id=i-bUBQAAQBAJ
https://books.google.de/books?id=i-bUBQAAQBAJ
https://books.google.de/books?id=i-bUBQAAQBAJ
https://books.google.de/books?id=i-bUBQAAQBAJ
https://books.google.de/books?id=i-bUBQAAQBAJ
https://books.google.de/books?id=i-bUBQAAQBAJ
https://doi.org/10.5555/2789272.2912091
https://doi.org/10.5555/2789272.2912091
https://doi.org/10.5555/2789272.2912091
https://doi.org/10.5555/2789272.2912091
https://doi.org/10.5555/2789272.2912091
https://doi.org/10.5555/2789272.2912091
https://doi.org/10.5555/2789272.2912091
https://doi.org/10.1145/634067.634255
https://doi.org/10.1145/634067.634255
https://doi.org/10.1145/634067.634255
https://doi.org/10.1145/634067.634255
https://doi.org/10.1145/634067.634255
https://doi.org/10.1145/634067.634255
https://doi.org/10.1145/634067.634255

20 C. Alrabbaa et al.

17. Dyer, T., Jr., J.W.B.: Sterling: a web-based visualizer for relational modeling lan-
guages. In: Rigorous State-Based Methods - 8th International Conference, ABZ
2021, Ulm, Germany, June 9-11, 2021, Proceedings. Lecture Notes in Computer
Science, vol. 12709, pp. 99–104. Springer (2021). https://doi.org/10.1007/978-3-
030-77543-8_7

18. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.: XAI – explain-
able artificial intelligence. Sci. Robotics 4(37) (2019). https://doi.org/10.1126/
SCIROBOTICS.AAY7120

19. Holzinger, A., Saranti, A., Molnar, C., Biecek, P., Samek, W.: Explainable AI
methods - a brief overview. In: xxAI – Beyond Explainable AI - International
Workshop, Held in Conjunction with ICML 2020, Revised and Extended Papers.
Lecture Notes in Computer Science, vol. 13200, pp. 13–38. Springer (2020). https://
doi.org/10.1007/978-3-031-04083-2_2

20. Kovtunova, A., Alrabbaa, C., Baader, F., Dachselt, R., Méndez, J.: The Concrete
Evonne (2025). https://doi.org/10.17605/OSF.IO/Y4X5T

21. Laugwitz, B., Held, T., Schrepp, M.: Construction and evaluation of a user experi-
ence questionnaire. In: HCI and Usability for Education and Work, 4th Symposium
of the Workgroup Human-Computer Interaction and Usability Engineering of the
Austrian Computer Society, USAB 2008, Graz, Austria, November 20-21, 2008.
Proceedings. Lecture Notes in Computer Science, vol. 5298, pp. 63–76. Springer
(2008). https://doi.org/10.1007/978-3-540-89350-9_6

22. Lutz, C.: Description logics with concrete domains-a survey. In: Advances in Modal
Logic 4, papers from the fourth conference on "Advances in Modal logic," held in
Toulouse, France, 30 September - 2 October 2002, pp. 265–296. King’s College
Publications (2002). http://www.aiml.net/volumes/volume4/Lutz.ps

23. Méndez, J., Alrabbaa, C., Koopmann, P., Langner, R., Baader, F., Dachselt, R.:
Evonne: A visual tool for explaining reasoning with OWL ontologies and supporting
interactive debugging. Comput. Graph. Forum 42(6) (2023). https://doi.org/10.
1111/CGF.14730

24. Sauro, J., Dumas, J.S.: Comparison of three one-question, post-task usability ques-
tionnaires. In: Proceedings of the 27th International Conference on Human Factors
in Computing Systems, CHI 2009, Boston, MA, USA, April 4-9, 2009 pp. 1599–
1608. ACM (2009). https://doi.org/10.1145/1518701.1518946

25. Schrepp, M.: User Experience Questionnaire Handbook (2015). https://doi.org/
10.13140/RG.2.1.2815.0245

26. Schrepp, M., Hinderks, A., Thomaschewski, J.: Design and evaluation of a short
version of the user experience questionnaire (UEQ-S). Int. J. Interact. Multim.
Artif. Intell. 4(6), 103–108 (2017). https://doi.org/10.9781/IJIMAI.2017.09.001

27. Søgaard, A.: On the opacity of deep neural networks. Can. J. Philos. 53(3), 224–239
(2023). https://doi.org/10.1017/can.2024.1

28. W3C OWL Working Group: OWL 2 Web Ontology Language Document Overview
(Second Edition) - W3C Recommendation 11 December 2012 (2012). http://www.
w3.org/TR/owl2-overview/

https://doi.org/10.1007/978-3-030-77543-8_7
https://doi.org/10.1007/978-3-030-77543-8_7
https://doi.org/10.1007/978-3-030-77543-8_7
https://doi.org/10.1007/978-3-030-77543-8_7
https://doi.org/10.1007/978-3-030-77543-8_7
https://doi.org/10.1007/978-3-030-77543-8_7
https://doi.org/10.1007/978-3-030-77543-8_7
https://doi.org/10.1007/978-3-030-77543-8_7
https://doi.org/10.1007/978-3-030-77543-8_7
https://doi.org/10.1007/978-3-030-77543-8_7
https://doi.org/10.1126/SCIROBOTICS.AAY7120
https://doi.org/10.1126/SCIROBOTICS.AAY7120
https://doi.org/10.1126/SCIROBOTICS.AAY7120
https://doi.org/10.1126/SCIROBOTICS.AAY7120
https://doi.org/10.1126/SCIROBOTICS.AAY7120
https://doi.org/10.1126/SCIROBOTICS.AAY7120
https://doi.org/10.1126/SCIROBOTICS.AAY7120
https://doi.org/10.1007/978-3-031-04083-2_2
https://doi.org/10.1007/978-3-031-04083-2_2
https://doi.org/10.1007/978-3-031-04083-2_2
https://doi.org/10.1007/978-3-031-04083-2_2
https://doi.org/10.1007/978-3-031-04083-2_2
https://doi.org/10.1007/978-3-031-04083-2_2
https://doi.org/10.1007/978-3-031-04083-2_2
https://doi.org/10.1007/978-3-031-04083-2_2
https://doi.org/10.1007/978-3-031-04083-2_2
https://doi.org/10.1007/978-3-031-04083-2_2
https://doi.org/10.17605/OSF.IO/Y4X5T
https://doi.org/10.17605/OSF.IO/Y4X5T
https://doi.org/10.17605/OSF.IO/Y4X5T
https://doi.org/10.17605/OSF.IO/Y4X5T
https://doi.org/10.17605/OSF.IO/Y4X5T
https://doi.org/10.17605/OSF.IO/Y4X5T
https://doi.org/10.17605/OSF.IO/Y4X5T
https://doi.org/10.17605/OSF.IO/Y4X5T
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1007/978-3-540-89350-9_6
http://www.aiml.net/volumes/volume4/Lutz.ps
http://www.aiml.net/volumes/volume4/Lutz.ps
http://www.aiml.net/volumes/volume4/Lutz.ps
http://www.aiml.net/volumes/volume4/Lutz.ps
http://www.aiml.net/volumes/volume4/Lutz.ps
http://www.aiml.net/volumes/volume4/Lutz.ps
http://www.aiml.net/volumes/volume4/Lutz.ps
http://www.aiml.net/volumes/volume4/Lutz.ps
https://doi.org/10.1111/CGF.14730
https://doi.org/10.1111/CGF.14730
https://doi.org/10.1111/CGF.14730
https://doi.org/10.1111/CGF.14730
https://doi.org/10.1111/CGF.14730
https://doi.org/10.1111/CGF.14730
https://doi.org/10.1111/CGF.14730
https://doi.org/10.1145/1518701.1518946
https://doi.org/10.1145/1518701.1518946
https://doi.org/10.1145/1518701.1518946
https://doi.org/10.1145/1518701.1518946
https://doi.org/10.1145/1518701.1518946
https://doi.org/10.1145/1518701.1518946
https://doi.org/10.1145/1518701.1518946
https://doi.org/10.13140/RG.2.1.2815.0245
https://doi.org/10.13140/RG.2.1.2815.0245
https://doi.org/10.13140/RG.2.1.2815.0245
https://doi.org/10.13140/RG.2.1.2815.0245
https://doi.org/10.13140/RG.2.1.2815.0245
https://doi.org/10.13140/RG.2.1.2815.0245
https://doi.org/10.13140/RG.2.1.2815.0245
https://doi.org/10.13140/RG.2.1.2815.0245
https://doi.org/10.13140/RG.2.1.2815.0245
https://doi.org/10.13140/RG.2.1.2815.0245
https://doi.org/10.9781/IJIMAI.2017.09.001
https://doi.org/10.9781/IJIMAI.2017.09.001
https://doi.org/10.9781/IJIMAI.2017.09.001
https://doi.org/10.9781/IJIMAI.2017.09.001
https://doi.org/10.9781/IJIMAI.2017.09.001
https://doi.org/10.9781/IJIMAI.2017.09.001
https://doi.org/10.9781/IJIMAI.2017.09.001
https://doi.org/10.9781/IJIMAI.2017.09.001
https://doi.org/10.9781/IJIMAI.2017.09.001
https://doi.org/10.1017/can.2024.1
https://doi.org/10.1017/can.2024.1
https://doi.org/10.1017/can.2024.1
https://doi.org/10.1017/can.2024.1
https://doi.org/10.1017/can.2024.1
https://doi.org/10.1017/can.2024.1
https://doi.org/10.1017/can.2024.1
https://doi.org/10.1017/can.2024.1
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

The Concrete Evonne 21

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The Concrete EVONNE: Visualization Meets Concrete Domain Reasoning
	1 Introduction
	2 Description Logics and Concrete Domains
	2.1 Concrete Domains
	2.2 Description Logics

	3 Combined Proofs
	4 Domain-Specific Visualizations
	4.1 Explanations of DQ,lin Entailments
	4.2 Explanations of DQ,diff Entailments

	5 Numerical Explanations in EVONNE
	6 Evaluation
	6.1 User Studies
	6.2 Performance Benchmark

	7 Conclusion
	References

