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Abstract. Evonne is a web application primarily designed to explain 
Description Logic (DL) entailments using an interactive visualization 
approach for proofs. This paper introduces an extension of Evonne 
to DLs with concrete domains, which are needed for formalizing con-
cepts whose definitions involve quantitative information. Specifically, we 
focus on two extensions of the DL EL⊥: one with constraints formu-
lated as linear equations and the other with difference constraints. First, 
we have extended Evonne to enable the generation and presentation 
of proofs involving these concrete domains. Then, leveraging the unique 
properties of each domain, we have designed and incorporated alterna-
tive visual explanations for the numerical parts of the proofs. Finally, 
we have assessed the effectiveness of these visual explanations through 
qualitative user studies and a performance benchmark. While opinions 
on one of these explanations varied, the other was widely recognized for 
its clarity and ease of understanding. 
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1 Introduction 

Due to the opacity of many machine learning approaches such as deep neural 
networks [ 27], explainability (xAI) has become a major research field in Artificial 
Intelligence [ 18, 19]. Symbolic AI approaches based on logic have the advantage 
over subsymbolic approaches that they are explainable by design: a consequence 
computed by an automated reasoner can in principle be explained using a proof, 
which demonstrates how the consequence can be derived from given axioms 
by applying simple inference rules, and the non-derivability of a statement can 
(for some logics) be explained by showing a finite counter-interpretation, which 
is a model of all axioms, but not of the non-derivable statement. However, to 
leverage this advantage of logic-based approaches in practice, one must be able 
to produce proofs (counter-interpretations) that are appropriate for explanation 
purposes and present them in a comprehensible and cogent way. 
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In ongoing work, we address these issues in the context of Description Logics 
(DLs) [ 12], which are a prominent family of logic-based knowledge representa-
tion languages frequently used to formalize ontologies for various application 
domains. The computation of appropriate proofs and counter-interpretations 
has been tackled in [ 3, 4] and  [  8, 9], respectively. Both means of explanation can 
be presented in our interactive visualization tool Evonne 1[ 2, 23], but the proof-
presentation facilities are considerably more mature. Since the publication of the 
Evonne system description [ 2] and a journal paper emphasizing its visualization 
components [ 23], this tool has been extended by new features and the look and 
feel of the system has been improved considerably. 

Here we concentrate on the extension of the proof visualization facilities of 
Evonne to DLs with so-called concrete domains [ 11, 22]. In particular, we con-
sider extensions of tractable DLs of the EL  family [ 10] with two p-admissible 
concrete domains based on rational numbers, one (.DQ,lin) that can  use linear  
equations to formulate constraints [ 13] and another (.DQ,diff) based on differ-
ence constraints [ 10]. Such numerical constraints turn out to be very useful for 
describing concepts whose definition involves quantitative information, such as 
the battery capacity of a drone, its flight time, and weather conditions including 
temperature, which may influence the battery discharge rate. The exact defini-
tion of p-admissibility is not relevant for this paper (see [ 10, 13] for details), but 
note that it is needed to preserve tractability. Both mentioned concrete domains 
are p-admissible, but their combination is not, though they can both be inte-
grated into the same DL as long as they do not interact. In [ 5], we have addressed 
the problem of generating proofs for consequences derived from knowledge bases 
formulated in such DLs. Basically, the proof system for the extended DL as 
introduced in [ 10] uses entailment between and unsatisfiability of sets of con-
crete domain constraints as applicability conditions. The idea is then to explain 
the satisfaction of such side conditions by a proof of the entailment (unsatisfiabil-
ity) if this is requested by the user. The first important new feature of Evonne 
described in this paper is the extension of its proof presentation facilities by such 
concrete domain proofs and their interaction with the abstract DL proofs. 

However, the most original contribution of this work lies in its introduction 
of novel visual explanations for unsatisfiability and entailment in the consid-
ered numerical concrete domains. These visualizations are designed to reflect 
the unique properties of the domains and offer more intuitive insight into the 
underlying numerical reasoning. In the case of .DQ,lin, unsatisfiability of a set 
of constraints using only two variables can be visualized in the 2D Euclidean 
Space by showing that the lines corresponding to the constraints do not inter-
sect in a single point. Here, we address the challenge of extending this idea to 
higher dimensions. For .DQ,diff, unsatisfiability of a constraint set corresponds 
to the existence of a negative cycle in the difference graph induced by these 
constraints. Thus, we developed a visual explanation based on such cycles. A 
priori, it is not clear how these visual explanations compare to numerical proofs.

1 Evonne’s source code, documentation, and evaluation material (user studies, bench-
mark) are available at: https://imld.de/evonne. 

https://imld.de/evonne
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For this reason, we conducted qualitative user studies to investigate the user 
reception of these visualization techniques. 

In summary, this paper presents the latest extension of Evonne, enabling 
interactive visualization of proofs for DLs with concrete domains—crucial for 
modeling concepts involving quantitative constraints. We contribute: (1) the first 
proof visualization tool supporting DLs with linear equations and difference con-
straints, (2) novel domain-specific visual explanations tailored to enhance com-
prehension of numerical reasoning, and (3) empirical validation through user 
studies and benchmarks, demonstrating the effectiveness of our approach. Our 
assessments showed that the proposed visualizations supported users in under-
standing conclusions more effectively than when no explanation was provided. 

2 Description Logics and Concrete Domains 

In this section we recall the Description Logic EL⊥ [ 12], and its extension EL⊥[D] 
with a concrete domain D [ 10]. We focus on two particular concrete domains 
DQ,diff and DQ,lin [ 10, 13], both defined over the rational numbers . Q. 

2.1 Concrete Domains 

Concrete domains integrate reasoning about quantitative attributes of objects 
into DLs [ 11, 13, 22]. Let NΠ be a set of concrete predicates, where every . Π ∈ NΠ

has arity .nΠ ∈ N. A  concrete domain (CD) .D = (ΔD, ·D) over NΠ consists of a 
set .ΔD and relations .ΠD ⊆ (ΔD)nΠ for all .Π ∈ NΠ. We assume that NΠ always 
contains predicates . ⊥ and . , interpreted as .⊥D := ∅, and .

D := ΔD. Let  NV be a 
set of variables. A  constraint .Π(x1, . . . , xnΠ

), with  .Π ∈ NΠ and .x1, . . . , xnΠ
∈ NV, 

is a predicate with variables as arguments. A constraint . α = Π(x1, . . . , xnΠ
)

is satisfied by an assignment .s : NV → ΔD if .(s(x1), . . . , s(xnΠ
)) ∈ ΠD. An  

implication is of the form .C → α, where  . C is a conjunction (set) of constraints. 
The implication is valid if all assignments satisfying all constraints in . C also 
satisfy . α. A conjunction . C of constraints is unsatisfiable iff .C → ⊥ is valid. 

The CD DQ,diff contains predicates . , . ⊥, .x = q, .x > q, and  .x + q = y, for  
constants .q ∈ Q, with their natural semantics [ 10]. For instance, the constraint 
.x + q = y is interpreted as .(x + q = y)DQ,diff = {(p, r) ∈ Q × Q | p + q = r}. 

Example 1. Assume a delivery drone with .bp representing its current battery 
percentage. The percentage is measured at multiple checkpoints, denoted as .bp0, 
.bp1, .bp2, with constraints: .bp0 − 0.25 = bp1, bp1 − 0.2 = bp2, bp1 > 0.3 and 
.bp2 > 0.25. If the initial percentage (.bp0) equals .0.65, then not all the constraints 
hold, and the drone is not permitted to fly. 

For DQ,lin, besides . and . ⊥, the predicates are given by linear equations 
.

n
i=1 aixi = b, for  .ai, b ∈ Q, with their natural semantics [ 13]. For instance, 

.x + y − z = 0 is interpreted as .(x + y − z = 0)DQ,lin = {(p, q, s) ∈ Q3 | p + q = s}.



6 C. Alrabbaa et al.

Example 2. Assume .nr and .hr represent the average normal and high battery 
discharge rates, respectively. Under normal conditions, the delivery drone can 
fly for 8 hours on a single charge with a .30Ah battery, i.e., .8nr = 30. In cold  
conditions, one hour of flight increases the battery consumption such that . 4nr+
hr = 30. Therefore, if a delivery requires at most 2 hours in cold temperatures, 
the drone can complete it on a single charge. 

2.2 Description Logics 

DLs are decidable fragments of first-order logic (FOL) with a special, variable-
free syntax and use only unary and binary predicates, called concept names 
and role names, respectively. These are used to build complex concepts, which  
correspond to first-order formulas with one free variable, and axioms, which  
correspond to first-order sentences. In this paper we consider the lightweight 
DL EL⊥. We use the usual notion of entailment, denoted .O |= A B, where  
Aand Bare concept names, and Ois a finite set of axioms, called an ontology. For  
more details about the syntax and semantics of DLs, see [ 12]. 

The extension of EL⊥ with a concrete domain D, i.e., EL⊥[D], is obtained 
by allowing constraints .α in D to be used as EL⊥ concepts. As in [ 5], we 
use the notation .[α] to distinguish between constraints and classical concepts. 
For instance, the statement that a delivery drone has a battery with a bat-
tery percentage greater than .0.25 can be expressed in an  EL⊥[DQ,diff] axiom as 
.DD has.(Battery [bp > 0.25]). 

3 Combined Proofs 

Evonne is a web application designed to explain DL entailments. It supports 
multiple proof types [ 2] and enhances them with interactive visualizations, help-
ing users understand entailments and debug ontologies [ 23]. Proofs in Evonne 
are generated using the Eveelibrary [ 7], and follow the notion introduced in [ 3]: 
A proof  Pof .O |= A B is a finite, acyclic, directed hypergraph, where each ver-
tex . v is labeled with an axiom . (v). Hyperedges are of the form .(S, d), where  . S
is a set of vertices and . d is a vertex such that .{ (v) | v ∈ S} |= (d). The  
leaf vertices of a proof are labeled with axioms from O, and  the root with  
.A B. Evonne visualizes the proof hypergraphs using tree structures. In this 
paper, we extend Evonne’s proofs to cover combined proofs for EL⊥[DQ,diff] and 
EL⊥[DQ,lin] entailments. The following example demonstrates the approach, as 
introduced in [ 5]. 

Let .O = {A [α1], A [α2], A [α3], [β] B} be an ontology such that 
.O |= A B. First, we identify the relevant constraints in O and establish impli-
cations between them in order to build the subsumption hierarchy of abstract 
concepts. By using an appropriate CD reasoner, we test relevant implications 
such as .{α1, α2} → β. The ontology is then extended with axioms that encode 
all the valid relevant implications, i.e., .O = O∪{[α1] [α2] [β], . . .}. By classi-
fying .O we obtain .O |= A B. Lastly, by integrating the proof of .{α1, α2} → β
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in the proof of .O |= A B as a proof for .[α1] [α2] [β], we obtain the  combined  
proof for .O |= A B. 

Example 3. Consider the delivery drone (.DD) from Example 2, along with the 
concept name large battery drone (.LBD). Additionally, assume the following 
information is given. First, if operating at a high discharge rate for two hours 
draws .30Ah, this implies that a drone has a large battery, i.e., .[2hr = 30] LBD. 
Second, the delivery drone satisfies the constraints shown in Example 2, i.e., 
.DD [8nr = 30] [4nr + hr = 30]. From these two axioms, it follows that the 
delivery drone is a large battery drone, i.e., .DD LBD. An explanation of this 
conclusion is provided by the combined proof shown in Fig. 1a, where the proof 
in Fig. 1b shows the inferences at the level of equations. 

To complete the picture of how concrete domain-dependent entailments are 
proven, we now describe the procedures that handle the CD reasoning steps. 

Reasoning in DQ,lin . Deciding the validity of .C → β is achieved by identify-
ing linear combinations that allow . β to be derived from the equations in C. For  
instance, the implication .{8nr = 30, 4nr + hr = 30} → hr = 15 can be shown 
by multiplying .8nr = 30 by .− 1

2 and adding it to .4nr + hr = 30. Similarly, the 
unsatisfiability of a system of equations can be shown by providing a linear com-
bination that results in the derivation of .0 = c, where  .c = 0. In [  5], determining 
the coefficients for the linear combinations is achieved using Gaussian Elimina-
tion, and these coefficients are used to build the inferences that constitute the 
proof. An example of a DQ,lin proof in Evonne is shown in Fig. 1b 

Reasoning in DQ,diff . Unlike the reasoning process in DQ,lin, deciding the 
validity of .C → β is  based on the  saturation of DQ,diff constraints, using the 
rules shown in [ 5, Fig. 1]. Thus, checking whether .C → β is valid is done by 
checking if the implication is present in the result of the saturation. In addition, 
if . β is of the form .x > q, then the implication is valid if either (i) .x = q where 
.q > q or (ii) .x > q where .q ≥ q are derived with the saturation rules. A proof 
of DQ,diff entailment is thus built using the instantiations of saturation rules 
directly. An example of such a proof in Evonne is shown in Fig. 1c 

Combined proofs do not depend on the nature of the domains, making them 
versatile explanations that can be applied to various logics and concrete domains. 
However, their level of detail can result in large structures with potentially com-
plicated inferences. For instance, the more variables and constraints involved 
in an entailment, the larger the resulting proof. To address this, we introduce 
alternative visual explanations, which we discuss in Sect. 4. 

4 Domain-Specific Visualizations 

In this section, we introduce two alternative visual explanations that leverage the 
specific characteristics of each concrete domain to present numerical entailments 
differently. These explanations do not rely on the DL part of the ontology, making 
them applicable to other logics or formalisms that incorporate these domains.
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Fig. 1. Examples of proofs in Evonne. 

4.1 Explanations of DQ,lin Entailments 

Let . β be a linear equation, and C be a set of linear equations such that . C →
β. The implication means that every assignment satisfying all the constraints 
in C, i.e., every solution, also satisfies . β. A proof explains the implication by 
showing how the conclusion . β is derived from equations in C, i.e., showing that 
all solutions to C are also solutions to . β. Hence, a compact representation showing 
every solution to C is a solution to . β offers an alternative way to explain the 
implication. 

If we consider systems of linear equations with at most two variables, which 
are shared across all equations (e.g., .{α1, . . . , αn, β}), then we can use lines in the 
2D Euclidean Space to achieve a compact representation of all solutions to the 
equations, as each solution corresponds to a point in the 2D space. For example, 
assume .{α1, . . . , αn} → β. If .β = ⊥, this means that the system .{α1, . . . , αn} has 
no solutions. In other words, the lines corresponding to .α1, . . . , αn neither inter-
sect at a single point nor overlap. On the other hand, if .β = ⊥ and . {α1, . . . , αn}
is satisfiable, then the system .{α1, . . . , αn, β} either has a unique solution, i.e., 
exactly one point where all the lines intersect, or infinitely many solutions, i.e., 
all lines overlap. Therefore, by demonstrating the existence or absence of such 
intersections, we can explain entailments effectively. 

Using dimensionality reduction, we can apply the same idea to equations with 
more than two variables. While there are multiple ways to achieve dimensionality 
reduction [ 15], we utilize the solution space of a system of equations to project the 
.n-dimensional equations to 2D. Let C be a set of equations where .C → β, let . s be 
a solution to  C, and  let . x and . y be any two variables appearing in . β. By replacing 
all the variables, except . x and . y, in all equations with their corresponding values 
in . s, we obtain equations involving at most two variables. The resulting equations 
can be viewed as a snapshot of C with respect to . s, focusing on . x and . y. Therefore, 
in a plane defined by . x and . y, and since . s is a solution, all the lines must intersect. 
Hence, we can explain .C → β by showing that for every solution . s and every plane
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Fig. 2. DQ,lin implication of .3x1 − 3x2 − x3 + 3x4 = 7 in Evonne. 

defined by . x and . y, the intersection of all the lines of C is the same intersection 
of the line corresponding to . β and the lines of C. 

To explain unsatisfiability, we can use a similar approach. If .C → ⊥, then  
there must be a contradiction in C. More specifically, at least two contradictory 
equations must be derivable from C, i.e., equations of the form .X = q and 
.X = p, where  .X is a sum of terms and .p, q ∈ Q, .q = p. Thus, in any 2D plane 
defined by variables appearing in C, with at least one variable appearing in . X, 
the lines corresponding to .X = q and .X = p do not intersect. Consequently, in 
a plane where all the equations in C needed to derive .X = q and .X = p can be 
plotted, these lines must also not intersect. Therefore, we can explain . C → ⊥
by highlighting these contradictory equations in C and showing that their lines 
never intersect, regardless of variable assignments. 

Figures 2 and 3 show examples of DQ,lin explanations in Evonne. The sys-
tem of equations is shown in the top left. Hovering over an equation highlights 
its corresponding line in the 2D plot, and vice versa, helping users connect the 
algebraic and geometric views of the constraints. In Fig. 2 the top right dis-
plays an instantiation of the system’s solution based on the chosen value for 
the free variable. Since this system has one degree of freedom, setting . x4 = 0
uniquely determines the remaining variables. Hovering over the question mark 
icon reveals the solution without the variable assignment. In contrast, in Fig. 3, 
the top right shows the system of equations with respect to the currently chosen 
variable assignment. Additionally, users can manipulate the visualization directly 
by switching between different planes and assigning values to (free) variables 
using the controls beside the plot. In the case of unsatisfiability, the visualiza-
tion makes contradictions immediately apparent: if a user assigns a value that 
causes an equation to evaluate to .p = q with .p = q, then this inconsistency is 
highlighted in red, as illustrated by .3 = 0 in Fig. 3.
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Fig. 3. DQlin implication of .⊥ in Evonne 

4.2 Explanations of DQ,diff Entailments 

It is well established that difference constraints (i.e., .x−y ≤ q) can be represented 
as graphs such that every variable corresponds to a vertex and every constraint 
to a weighted edge [ 14]. Given a set of difference constraints, deciding whether 
it is unsatisfiable can be reduced to finding a simple cycle in the corresponding 
graph with a negative weight [ 14]. Therefore, we use graphs and negative cycles to 
explain implications in DQ,diff. However, since predicates in DQ,diff express more 
types of constraints, we first need to introduce some necessary transformations. 

Let C be a set of difference constraints. A difference graph is a weighted 
directed graph .G = (V,E), where each variable .xi in C corresponds to a vertex 
.vi ∈ V , and each constraint .xj − xi ≤ qij corresponds to an edge . (vi, vj) ∈ E
with weight .qij ∈ Q. A  path .π(v, u) from . v to . u is a sequence of edges: 

. v
q0−→ v1

q1−→ v2 . . . vn
qn−→ u,

with weight .πw(v, u) = q0 + q1 + . . . + qn. A path is simple if all vertices, with 
the possible exception of . v and . u, are distinct. A negative cycle is a simple path 
.π(v, v) where .πw(v, v) < 0. A set of difference constraints is unsatisfiable iff the 
corresponding difference graph contains a negative cycle ([ 14, Theorem 24.9]). 

Constraints in DQ,diff of the form .y−x = q can be rewritten as two difference 
constraints: .y−x ≤ q and .x−y ≤ −q. Additionally, the unary DQ,diff constraints, 
i.e., constraints of the form . , where  . ∈ {=, >}, can be represented as 
.x − z0 where .z0 is a fresh variable. This formulation is sound because . 
is satisfiable iff .{x − z0 0 = 0} is satisfiable ([ 14, Lemma 24.8]). 

Lastly, we rewrite .x − z0 > q as .z0 − x ≤ −q − , where  . is a placeholder 
for some small positive value. This rewriting is sound for the following reason:
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Fig. 4. Example of an explanation for DQ,diff implications in Evonne. 

If C is satisfiable and .C ∪ {x − z0 > q} is unsatisfiable, then for any positive 
.e ∈ Q, the constraints .C ∪ {x − z0 ≥ q + e} are also unsatisfiable, which is 
equivalent to .C ∪ {z0 − x ≤ −q − e}. Meanwhile, for any assignment satisfying 
.C ∪ {x − z0 > q}, there exists a positive .e ∈ Q such that the same assignment 
also satisfies .x − z0 ≥ q + e > q. Thus,  .C ∪ {z0 − x ≤ −q − e} is also satisfiable. 
Since such a small positive rational number . e can always be found, we use . 
symbolically as a reference to . e whenever we need to transform a constraint 
with a .>-predicate, rather than computing the specific value . e for each set of 
constraints. 

Consequently, we can represent any set C of DQ,diff constraints as a difference 
graph, and if .C → ⊥, we can explain the contradiction in C by identifying the 
negative cycle in the graph. However, if C is satisfiable and .C → β, an additional 
step is required. In particular, we can explain that C implies . β by showing that 
.C ∪ {¬β} → ⊥, which allows us to effectively use the notion of negative cycles 
to explain the implication. If . β is of the form .x > q, then the negative cycle 
in the difference graph corresponding to .C ∪ {x − z0 ≤ q} shows that whenever 
an assignment satisfies all the constraints in C, the  value of  . x must be greater 
than . q. If  . β is of the form .x + y = q, then  .x + y = q is transformed into 
.x − y ≤ q − ∨∨∨ y − x ≤ −q − , leading to two negative cycles in the graph 
corresponding to .C ∪ {x − y = q}. These cycles explain .C → x − y = q by 
demonstrating that no satisfying assignment for C exists unless .x − y = q holds. 

Figure 4 shows an example of a negative cycle in Evonne. Hovering over a 
constraint highlights its corresponding edge(s) in the graph, and vice versa. The 
dotted edges represent the negated conclusion. Furthermore, the negative cycle 
is animated, allowing users to visually follow its progression. This animation 
can be triggered by clicking on a vertex or a constraint; the clicked element 
then determines the starting point of the animation in the graph. Additionally,
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Fig. 5. Popover for specifying new project information in Evonne. 

users have access to a feature that lets them assign concrete values to variables 
by double-clicking on them. These values are then automatically propagated 
along the negative cycle, allowing users to observe how the set of constraints 
behaves under such assignments. In particular, this makes it possible to see 
exactly how the cycle leads to logical inconsistencies, which are highlighted in 
red. An example of such a contradiction is .x3 = 3 ≤ 3 − , as shown in Fig. 4. 

5 Numerical Explanations in EVONNE 

The first step to using  Evonne to generate CD explanations is to create a new 
project. As shown in Fig. 5, users must first specify which reasoner they would 
like to use—which, in our case, is the CD reasoner. This selection prompts the 
user to choose one of the two supported domains. Since the OWL 2 standard [ 28] 
does not support all predicate types used in our concrete domains, Evonne 
requires the user to provide two files for an ontology: one text file that contains 
the CD constraints of the ontology, and one OWL file that contains the DL 
part. Once the files are loaded, the user is asked to provide an axiom (concept 
inclusion) that they would like to have proven. If proving this axiom depends on 
the concrete domain part of the ontology, then a combined proof is generated 
and displayed. 

By default, all numerical subproofs within a combined proof are collapsed 
into single inferences. Each of these inferences is labeled with a unique rule 
identifier—for example, the label CDP1 used in the proof shown in Fig. 1a— 
which allows for a more compact presentation of the proof. However, users can 
expand these subproofs to reveal all intermediate inferences. The visual expla-
nations are accessible by clicking the labels of the numerical subproofs, which 
appear as popovers, as shown in Figs. 2, 3, and  4). It is worth noting that visual



The Concrete Evonne 13

explanations rely only on the constraints within the corresponding subproofs 
and do not use additional constraints from the ontology. 

The CD explanations in Evonne use function-plot and cytoscape.js to render 
the 2D plots and difference graphs, respectively. To handle numerical precision 
in JavaScript, we represent rational numbers as fractions, using Fraction.js. We  
implemented a Gaussian elimination solver for evaluating DQ,lin equations, and 
a Hamiltonian cycle detector for animating the negative cycles. In our difference 
graphs, a negative-weight Hamiltonian cycle is guaranteed. This is because our 
graphs are based on minimal proofs, ensuring that (i) all necessary constraints for 
constructing the negative cycle are present, and (ii) no constraint is superfluous, 
as the proof’s leaf constraints correspond to a justification, i.e., a minimal set of 
constraints entailing the proof’s root constraint [ 3]. 

The current version of Evonne is accessible through https://imld.de/evonne, 
where all the examples used in the user studies (Sect. 6.1) and  the benchmark  
(Sect. 6.2) are listed under the Play Around tab of Evonne. 

6 Evaluation 

We conducted two experiments to evaluate different aspects of our approach. 
The first experiment consists of user studies that assess the effectiveness of the 
numerical explanations in terms of user understanding and perceived helpfulness. 
The second experiment is a benchmark that evaluates the efficiency of rendering 
these explanations. 

6.1 User Studies 

To assess the CD explanations we conducted two qualitative studies—one for 
DQ,diff and the other for DQ,lin—using online structured interviews. Both stud-
ies compared the classical proofs (e.g., Figs. 1b, and 1c) with their respective 
alternative CD explanation (e.g., Figs. 2, 3, 4). The goal was to compare the 
effectiveness of the explanations and collect feedback to improve them. 

To ensure adherence to best scientific practices, we preregistered the studies. 
The preregistration, an extended report, and detailed user feedback are available 
online [ 20]. 

Study Design. We employed a 2x2 factorial design with two independent vari-
ables: representation (i.e., plot/cycle or proof ), and task type (i.e., unsat-
ifiability or entailment). The task type condition was necessary due to slight 
differences in plot and cycle representations between cases. Within each domain, 
four visual explanations of comparable difficulty were created with Evonne. 
Each task in DQ,lin involved 3–4 linear equations and, for DQ,diff, 4–6 differ-
ence constraints. We used a within-subjects design with a randomized order: 
all participants experienced all conditions and examples. The dependent vari-
ables included ease of use (measured using Single Ease Question, SEQ [ 24]), 
user experience (assessed with User Experience Questionnaire, UEQ-S [ 21, 26]),

https://mauriciopoppe.github.io/function-plot/
https://js.cytoscape.org/
https://github.com/rawify/Fraction.js
https://imld.de/evonne
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Fig. 6. Distribution of SEQ responses in DQ,diff: X-axis represents how difficult it was 
to understand an explanation, and Y-axis indicates the number of participants who 
selected each class. 

and subjective preference. These dependent variables are interrelated. As demon-
strated further, subjective preferences consistently aligned with the results from 
SEQ and UEQ-S, reinforcing the validity of our findings. The online surveys were 
hosted on LimeSurvey [ 1] and included an introductory video for each domain. 
The DQ,diff study averaged just 35 minutes, whereas the DQ,lin study required 
an average of 50 minutes. 

We recruited eleven participants (2 female, 9 male), aged 18–44, from among 
colleagues familiar with logic and linear algebra, of whom seven were Ph.D.s, 
two M.Sc.s, and one B.Sc. Participants were informed about the objective of the 
studies and consented to the use of anonymous data for scientific purposes. 

Results for DQ,diff . First, SEQ shows how difficult the explanation is to under-
stand on a Likert scale from 1 “very difficult” to 7 “very easy”. Figure 6 demon-
strates the following findings: For an entailment task, cycles and proofs received 
similar evaluations (cycles: average 5.6, sd. = 0.9; proofs: average 5.8, sd. = 
1.2, respectively). However, for unsatisfiability, cycles received an average score 
of 6, sd. = 0.8, and were unanimously perceived as more intuitive than proofs 
(average 5, sd. = 1.3). 

In addition to SEQ, participants briefly explained why they found a task diffi-
cult. They generally found cycles and their animations clear and understandable, 
particularly because the visualization automated calculations, highlighted nega-
tive cycles, and helped relate edges to constraints. However, a few participants 
noted that understanding the interface and interpreting the information required 
some initial effort, explanations, and practice, as in “It took me a moment to 
understand the tool. Once I was given the explanation, I could understand how it 
works”. On the other hand, proofs were perceived slightly less positively. While 
participants appreciated the ability to inspect inference steps, clearly identify 
which equations to combine, and the simplicity of step verification, they also 
noted some challenges. These included uninformative or redundant information 
(e.g., repetitive left-hand sides of axioms and overly lengthy node labels), the 
need for manual calculations, and difficulties with the semantics of edge opera-
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Fig. 7. DQ,lin proof (in blue), plot (in cyan), DQ,diff proof (in white), and cycle (in gray) 
UEQ-S scores, their interpretation, and confidence intervals. (Color figure online) 

tions. For instance, a participant remarked: “Proofs take a lot of space, and the 
edge labelings are unfamiliar”. 

Overall, both methods were well received, with participants appreciating 
their different strengths. As one participant summarized: “A positive implica-
tion is actually very well represented in a proof. Cycle highlighting, hovering and 
animation are super cool”. 

Next, we assessed the user experience using the UEQ-S [ 25], by calculat-
ing pragmatic and hedonic quality scores. Pragmatic usability focuses on the 
task-oriented nature of an experience, whereas hedonic usability reflects non-
utilitarian aspects such as appeal, originality, and joy of use. The white and 
gray bars in Fig. 7 correspond to the following results: Proofs received an “above 
average” rating across all qualities, with scores of .1.364 (pragmatic quality, e.g., 
usability and functionality), . 1 (hedonic quality, e.g., enjoyment and stimulation), 
and .1.182 (overall quality). In contrast, cycles were rated as “excellent” in all 
three categories, with scores of .1.795 (pragmatic), .1.727 (hedonic), and . 1.761
(overall). 

After each task, participants were asked whether the explanation service was 
useful for understanding. All but one participant responded “yes” across both 
task types and both representations. The outlier cited confusion related to the 
naming of proof edges. 

Finally, in the post-test assessment in DQ,diff, most participants preferred 
cycles (8 vs. 2 for proofs, 1 for both). This preference grew stronger with more 
constraints (9 vs. 2 for proofs).
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Fig. 8. Distribution of SEQ responses in DQ,lin: The X-axis represents how difficult it 
was to understand an explanation, and the Y-axis indicates the number of participants 
who selected each class. 

Results for DQ,lin . Regarding SEQ, Fig. 8 demonstrates that, across both task 
types—unsatisfiability and entailment—plots (with average scores of 4.7, sd. = 
2.2, and 3.9, sd. = 1.8, respectively) were perceived as less intuitive than proofs 
(with average scores of 5.3, sd. = 1.2, and 4.8, sd. = 1.5, respectively). In the 
case of plots, participants found them useful and enjoyable but also cognitively 
demanding to combine and interpret multiple variables displayed simultaneously, 
in particular when dealing with a higher number of dimensions. A respondent 
highlighted this point: “The projection made me think that the solution was a 
point at first, before I realized that the solution is higher dimensional”. Unsatis-
fiability tasks are perceived slightly easier than the entailment ones. Over time, 
familiarity with the visualization also improved, aided by provided instructions. 
For proofs, some participants found the step-by-step approach helpful, as it made 
the task easier to follow and verify compared to plots. They appreciated the 
ability to trace each step and felt confident in the overall result due to its clear 
mathematical foundation. However, the mental calculations required for veri-
fying were quite challenging, as one participant noted: “For proofs, I like that 
they show each individual step, but I did not figure out the solution myself from 
proofs, instead I trusted the system”. Many participants found the notation less 
accessible, in particular: “Too many symbols and too long node labels so it was 
hard to parse”. 

With respect to user experience, the blue and cyan bars in Fig. 7 illustrate the 
following findings: Proofs received an overall rating of “above average” (.1.159). 
Specifically, they scored “above average” (.1.523) for pragmatic qualities (e.g., 
usability and functionality) but “below average” (.0.795) for hedonic qualities 
(e.g., enjoyment and stimulation). In contrast, plots were rated overall as “below 
average” (.0.795). They scored “bad” (.0.568) for pragmatic qualities but achieved 
an “above average” (.1.023) rating for hedonic qualities. 

After each task, we asked if the explanation was helpful. For proofs, the  
response was unanimously positive across both task types. Feedback on plots
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varied: for unsatisfiability, 10 said “yes” and 1 was “not sure”; for entailment, 6  
said “yes”, 4 were “not sure”, and 1 said “no”. 

Subjectively, most participants preferred proofs (8 vs. 2 for plots, 1 for both). 
However, when linear equations involved only 2–3 variables, preference shifted 
to plots (8 vs. 3 for proofs). 

Discussion. The user studies demonstrate that concrete domain-specific visu-
alizations can significantly enhance the understanding of numerical reasoning, 
especially in the case of DQ,diff, where animated cycles were preferred for their 
clarity and intuitiveness. While proof trees were appreciated for their struc-
ture and detail, the choice between concrete domain visualizations and proofs 
appears task-dependent and influenced by numerical complexity. For simpler 
DQ,lin entailments involving few variables, users preferred plots; however, for 
more complex cases and even with the added cognitive load, proofs were still 
preferred, as they were perceived as more trustworthy. These insights sug-
gest that offering multiple, complementary explanation forms—proofs and CD 
visualizations—can accommodate diverse user preferences and experience lev-
els. Future iterations of Evonne could build on this by incorporating adaptive 
explanation strategies based on characteristics of entailments or user feedback. 
Additionally, enabling users to adjust the existing visual explanations—or even 
extend them with user-defined visualizations, as supported by systems like Ster-
ling [ 17]—could further accommodate individual preferences. 

6.2 Performance Benchmark 

We measured the response times for rendering the concrete domain explanations 
using combined proofs from the dataset provided in [ 5]. To automate the pro-
cess, we used cypress.io, a testing framework, to load these proofs and open the 
corresponding CD explanations. Since the goal of the benchmark is to assess the 
rendering overhead introduced by the visual explanations, we do not measure 
the time required to compute the combined proofs, as this has already been 
reported in [ 6]. 

On average, response times were 18.32 ms for DQ,lin and 8.7 ms for DQ,diff. 
The slowest times were 180.4 ms for DQ,lin and 124.8 ms for DQ,diff, which  
correspond to large proofs that push the browser’s resources considerably. These 
higher initial times occur when a CD explanation is opened for the first time, 
as the required HTML DOM elements are created and the relevant libraries 
are loaded. However, subsequent renders within the same proof are significantly 
faster. In the slowest cases, follow-up renders took 44.4 ms in DQ,lin and 9.3 
ms in DQ,diff. Note that all response times are within the 200ms threshold for 
perceived responsiveness [ 16]. 

7 Conclusion 

We have extended Evonne to generate and present proofs for EL⊥[DQ,diff] and 
EL⊥[DQ,lin]. Additionally, we have designed and developed alternative visual

https://cypress.io
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explanations for numerical entailments, taking into account the characteristics 
of each concrete domain. Specifically, we illustrate DQ,diff entailments using neg-
ative cycles and DQ,lin entailments with 2D plots. These visual explanations are 
specific to the concrete domain yet independent of the underlying logic, mak-
ing them adaptable and applicable to other formalisms. Furthermore, the visual 
display of the CD explanations scales better than that of the combined proofs. 
For instance, in the case of DQ,lin, adding more constraints simply results in 
additional lines in a 2D plot, without significantly affecting the overall layout. In 
contrast, increasing the number of equations in a proof expands the entire proof 
structure, which can make navigation more difficult due to increased scrolling 
and zooming. 

We conducted qualitative user studies to assess the effectiveness of numerical 
explanations in Evonne. For  DQ,lin, participants’ opinions varied, though most 
alluded to a trust factor favoring proofs over visual explanations, suggesting 
that, in this case, such visual explanations might not be necessary. In contrast, for 
DQ,diff, participants highly valued the clarity and ease of understanding provided 
by the animated cycles, making them a more preferred form of explanation. 

As future work, we plan to address issues raised by the participants’ feed-
back on both proofs and the visual CD explanations. Additionally, we will 
refine Evonne’s capabilities for explaining non-consequences through counter-
interpretations and extend them to support DLs with concrete domains. 
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