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Figure 1: a) user-specific interface in a drawing application, b) debug view showing image and skeleton-based user data, c) features

used for re-identification (left: image histograms and right/top: floor-shoulder distance, shoulder width)

ABSTRACT

We present YouTouch!, a system that tracks users in front of an in-
teractive display wall and associates touches with users. With their
large size, display walls are inherently suitable for multi-user in-
teraction. However, current touch recognition technology does not
distinguish between users, making it hard to provide personalized
user interfaces or access to private data. In our system we place a
commodity RGB + depth camera in front of the wall, allowing us
to track users and correlate them with touch events. While the cam-
era’s driver is able to track people, it loses the user’s ID whenever
she is occluded or leaves the scene. In these cases, we re-identify
the person by means of a descriptor comprised of color histograms
of body parts and skeleton-based biometric measurements. Addi-
tional processing reliably handles short-term occlusion as well as
assignment of touches to occluded users. YouTouch! requires no
user instrumentation nor custom hardware, and there is no reg-
istration nor learning phase. Our system was thoroughly tested
with data sets comprising 81 people, demonstrating its ability to
re-identify users and correlate them to touches even under adverse
conditions.
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1. INTRODUCTION

Large interactive surfaces such as tabletops and display walls are
increasingly popular and, by virtue of their size, invite multi-user
interaction. In this context, distinguishing between users is im-
portant because it allows personalized interaction (demonstrated,
e.g., in the DiamondTouch project [8]). Additionally, knowledge
of users’ positions in front of wall displays allows rich interaction,
among others enabling proxemic [2] and body-centric interaction
(e.g., proposed with BodyLenses [17]). However, current interac-
tive displays wall do not provide this information, so most research
work in this field uses instrumentation or marker-based tracking
(e.g., OptiTrack).

While there are a number of tabletop-specific systems that pro-
vide the user’s identity (e.g., [6, 14, 22]), there is very little work
that is applicable to large vertical displays. In particular, dis-
play wall users tend to move around the room during collaborative
work [16], so camera-based systems need to deal with occlusion
issues. Many application scenarios — especially in casual or public
settings — also require support for true walk-up-and-use interaction,
without an explicit ID step, training phase, or user instrumentation.

Our system uses low-cost, off-the-shelf hardware (a consumer
RGB + depth camera) to enable this. From this input, state-of-the-
art tracking systems such as the one integrated into the Microsoft
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Kinect can establish the locations of users [28]. However, these
tracking systems lose user identification whenever a person be-
comes occluded or leaves and re-enters the interaction space. Ad-
ditionally, state-of-the-art tracking is not tailored for display wall
interaction, so no component that correlates persons with touch
events on the wall exists.

Our main contribution is a low-cost and reliable method for
tracking users at a large display wall and associating touches with
the respective users. We adapt and extend methods used in surveil-
lance to re-identify (RelD) users after tracking loss. To this end,
we use person descriptors containing color histogram data and
skeleton-based biometric measurements (Figure 1c). Our novel
TouchProcessor component associates touches with users and uses
the skeleton data to determine the hand the user is touching with.
Using stored skeleton data of past frames, even touches of users
currently occluded can be assigned in a large majority of cases.

As the task we put our system to is quite challenging, we thor-
oughly evaluated it with a considerable number of test scenes. We
acquired RGB + depth (RGBD) video and tracking data of a total of
81 subjects, with 36 single-person scenes used for optimization of
the ReID component. For evaluation, we recorded the remaining 45
users in multi-person scenes involving numerous position swaps to
stress the system. We evaluated three configurations of our system,
allowing us to judge the effectiveness of different components. In
addition, we manually inspected the remaining touch identification
failures to find their causes. Finally, we implemented a sophisti-
cated development and test toolset able to record and play back the
data interactively, and including pause and single-step facilities to
allow pinpointing and debugging of issues.

2. INTERACTION USING YOUTOUCH!

YouTouch! enables numerous application scenarios and effort-
less multi-user cooperation. Since the system has knowledge of
the positions of users in front of the wall, proxemic [2] and body-
centric [17] interaction becomes possible. YouTouch! makes areas
with personalized views feasible, and the display can show personal
data in close proximity to the user. For example, menus can auto-
matically appear when a user approaches the wall and be placed
at appropriate positions with respect to her. Since touches are also
personalized, user specific modes and settings can be applied, and
seamless transitions between proxemic and touch interaction be-
come possible. YouTouch further enables, e.g., personalized clip-
boards (e.g., proposed by Rekimoto [23]) and interaction in con-
junction with personal devices such as the SleeD [32].

To illustrate the possibilities, we implemented an example vec-
tor drawing program (Figure la) that integrates body-centric and
touch interaction to deliver an intuitive and user-specific inter-
face. The pen settings are user-specific; colors remain selected
even if the user becomes occluded or leaves the room and comes
back. The pen configuration dialog intelligently appears close to
the user when she approaches the wall and follows her if her po-
sition changes significantly, thus always staying in an appropriate
position. The dialog can be dragged, adding a user-specific offset
to the position. We additionally implemented a user-specific undo;
this is possible because the system knows who drew what. Finally,
the hand recognition integrated into YouTouch! allows us to sup-
port hand-specific modes. In case of the drawing program, the right
hand draws, while the left hand erases. In summary, YouTouch! al-
lows us to support not only a user-specific pen configuration, but
also user-specific menu positioning and a user-specific undo stack;
furthermore, transitions between interactions in front of and on the
wall are integrated seamlessly.

3. BACKGROUND AND RELATED WORK

There is significant work regarding the identification of users
touching an interactive display, which we review in the following
section. In addition, our work builds on previous research in person
re-identification, also summarized below.

3.1 Touch User Identification

A large majority of work on touch user identification is in the
context of interactive tabletops — summarized in Table 1.

A number of works require explicit registration followed by
a machine learning step. Among these is Ramaker et al.’s Car-
pus [22], which identifies users via an overhead camera that tracks
registered users’” hands. Schmidt et al.’s HandsDown [27] uses hand
contours for this purpose. Similarly, finger positions of 5-finger
touches can be registered and used for identification [4]. Harrison
et al. [13] distinguish registered users using the raw signal of a ca-
pacitive touch screen, while Richter et al.’s BootStrapper [24] uses
a depth camera pointed at users’ feet to recognize registered users.
In all of these cases, the system first captures user information in a
registration step. This information is then used to learn a classifier,
which generally requires lengthy computation. The result is usually
a very high identification accuracy, but the registration and learning
steps prevent spontaneous interaction with unknown users.

It is also possible to distinguish users using additional worn or
carried equipment. Holz et al.’s Biometric Touch Sensing [15] uses
a biometric sensor armband for this purpose. With optical touch
recognition, additional equipment can use pulsing LEDs to send
ID data to the touchscreen. This is used in Meyer et al.’s [dWrist-
bands [19] and Roth et al.’s IR Ring [25]. Schmidt et al. iden-
tify mobile phones touching a screen by correlating the time of
the phone’s touch with its accelerometer data [26]. While these
systems have uses in planned situations with a limited number of
users, the requirement for additional equipment is a hinderance in
walk-up-and-use situations.

Conversely, most approaches that are usable in walk-up-and-use
scenarios restrict the movement of the user. These include a num-
ber of works that use an overhead camera: Clayphan et al. [6],
Murugappan et al. [20] and Thelen et al. [29] all track the user’s
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Table 1: Comparison of tabletop-centric related work for touch
user id.



hands using an RGBD camera but lose her ID when she leaves the
tracked area. Similarily, Dohse et al. [9] use a conventional camera
and hand color segmentation for the same purpose. To extend the
interaction area, Medusa by Annett et al. [1] uses additional prox-
imity sensors mounted at the side of a tabletop, but still loses the
user’s ID when she leaves the sensor range. The DiamondTouch
system [8] instruments chairs, relying on the user forming a con-
duit between her chair and the tabletop at each touch.

Holz et al.’s Fiberio [14] is a touchscreen that is able to iden-
tify users biometrically using fingerprints. It is an exception in that
it allows both spontaneous interaction by unregistered users and
supports user movement. Unfortunately, it requires custom display
hardware and a very high-resolution camera to support a small dis-
play area. There is also no support for interaction in proximity to
the display.

In summary, shortcomings of these works with respect to our
goals include a) an explicit registration step that prevents usage in
walk-up-and-use scenarios, b) worn or carried equipment, c) the
use of custom and/or costly hardware, and d) the assumption that
users will not leave the tracking area or switch places.

We found only two works that cover user identification specifi-
cally tailored to wall displays, both Kinect-based and leveraging the
ability of the Kinect to track users. Turnwald et al. [30] place the
camera in front of the screen. While similar to our setup, their sys-
tem loses the user’s ID once the camera loses tracking (i.e., when
users switch places), since there is no ReID component or occlusion
handling. Chen et al. [5] place the Kinect at the side of a vertical
screen and re-identify users using color histograms when tracking
is temporarily lost. However, with larger displays, this setup suffers
from occlusions. In contrast, we minimize occlusions through cam-
era placement behind the users. Additionally, our rearward view
allows for more robust skeleton fitting and tracking, which allows
us to use skeleton data for ReID. Chen’s paper focuses on interac-
tion and therefore omits algorithm details; furthermore, there is no
evaluation of their ReID performance.

In addition to a tracking component, the Kinect system [18] also
provides a user recognition component that can make up for failures
in skeleton tracking. Unfortunately, it relies on face recognition,
and in the case of larger display walls there is no camera position
that has a reliable view of the face, since interacting users stand
close to the wall (Figure 1a).

3.2 Person Re-Identification

In computer vision, identifying people across different cameras
(or if they exit and reenter one camera’s field of view) is known
as person re-identification (or RelD). This is an important issue
in surveillance and therefore a large research field, with several
overview articles available (e.g., [3, 7, 10, 12, 31]).

RelD algorithms generally work with appearance-based fea-
tures, relying, e.g., on the ability to distinguish different persons’
clothing. Features are extracted from segmented images and com-
bined to construct descriptors that discriminate individuals. Peo-
ple are re-identified by matching probe descriptors from current
camera images to a gallery of previously scanned descriptors using
a model-based matching procedure. However, in contrast to our
scenario, realtime re-identification and database building is not a
requirement in most surveillance settings. Challenges in general
RelD settings include varying lighting conditions, camera color
calibration and the need to work with low-resolution images con-
taining significant clutter. We leverage and repurpose these algo-
rithms, adapting them to the specifics of our setup and to our real-
time setting.
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Figure 2: System Architecture, with pre-existing parts shown
in grey. The main new parts are the ReID Component (c),
which re-identifies users newly tracked and the TouchProces-
sor (f), which associates touches with users.

4. SYSTEM ARCHITECTURE

Our proposed system (Figure 2) relies on an RGBD camera (Fig-
ure 2, a) with an associated tracking component (b) to provide RGB
and depth images as well as person tracking data. To maximize the
tracked area while minimizing mutual occlusions between users,
we place the camera several meters from the wall, facing the wall,
and above head height.

The RGBD camera’s tracking component delivers segmented
images and user skeleton data (see Figure 8), but loses the user’s
ID whenever she is occluded or leaves the tracking area. The
YouTouch! system consists of two main components that build on
this and communicate using a simple network protocol:

o A RelID Component (Figure 2, c) that re-identifies users en-
tering the camera’s view using a User Database (d).

o A TouchProcessor (f) that uses the data provided by the ReID
component to correlate touches (e) with users and delivers
the results to the application (g).

Additionally, the system includes full recording and playback
functionality to allow for efficient testing and evaluation of both
components.

4.1 RelD Component

The ReID Component processes the tracker’s images (including
RGB and depth data as well as a segmented bitmap) and user skele-
ton data and uses it to build a user database in realtime. When the
Tracker reports a new user, the ReID component attempts to corre-
late this user with the users in the database. An additional occlu-
sion handling step remembers users that become untracked without
leaving the tracking area, allowing optimized re-identification in
this common case.

4.1.1 Algorithm

Re-Identification of users relies on a database of person descrip-
tors that is generated and updated while tracking. Our person de-
scriptors consist of anthropometric features (human biometric mea-
surements such as height calculated from the skeleton data) and
color features (histograms of person-specific image regions such
as the torso). The similarity S between two person descriptors is
calculated from the feature correlation coefficients coeff , and cor-
responding weights w (with w, determined in an optimization step
as detailed in the following section):

S = Z wy - coeff ;
f

The anthropometric features we use are based on a candidate set
used by Pala et al. [21] (Figure 5). From this set, we chose those
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Figure 3: RelD performance for differing detection thresholds, ReID time limit in frames, and number of histogram bins. The

vertical lines indicate the values used in the prototype.

that posessed the smallest intra-person variance (e.g., discarding
arm length in this step) to maximize feature stability. Furthermore,
in the case of multiple features that described a similar human mea-
surement (e.g., height and floor-neck distance), we discarded all but
one, maximizing feature independence. This left the floor-neck and
floor-hip distances as well as the shoulder width as features (Fig-
ure lc, right and top). Given descriptors i and j, we calculate the
correlation coefficient coeff ; of these features from the feature val-
ues d; and d; and the range of the feature range  in the training data
set:

As color features, we use histograms calculated from the seg-
mented images of different body parts. Candidate body parts were
the legs, the torso, the head and the feet (Figure 1c, left). While re-
lated work (e.g., [11]) uses multiple color components, we obtained
best results using exclusively the hue component of the HSV color
space for the histograms. The number of histogram bins was deter-
mined in an optimization step (see the following section). Correla-
tion between two histograms is determined using normalized cross
correlation.

We introduce descriptor states to manage the lifetime of active
users’ descriptors (Figure 4). For each camera frame, all descrip-
tors of people visible to the camera are processed. If the person
is new, the descriptor is initially put in the UNKNOWN_TRACKED
state. If not, the descriptor is updated with the current feature vector
using a sliding average with a window of 100 frames (3 seconds) to
accomodate for changes in illumination (e.g., due to new wall con-
tent being displayed). If a descriptor is in UNKNOWN_TRACKED
state, it is matched with all descriptors in the database. If a suffi-
ciently similar descriptor is found, both are merged and the descrip-
tor state is set to KNOWN_TRACKED. Conversely, if a person with
an UNKNOWN_TRACKED descriptor has been seen for a maximum
number of frames (time limit), we add it to the database as a new
person. Again, descriptor similarity threshold and RelD time limit
were determined in an optimization step described in the following
section.

Disappear:
occluded Timeout
OCCLUDED
Found in DB
UNKNOWN_ 7| known_ |
@—>| TRACKED o | TRACKED Re-appaar
- —> a2
Timeout: Disappear: near O
add to DB

tracking edge

Figure 4: Lifetime of descriptors for currently active users
in the ReID component. Users in the KNOWN_TRACKED and
OCCLUDED states are also in the database.

Additional processing covers the common case of people be-
coming occluded by others and reappearing shortly after. While a
KNOWN_TRACKED descriptor that disappears at the border of the
tracked area is removed from the list of active descriptors, occlu-
sion is assumed if a person disappears in the center. Corresponding
descriptors are put into the OCCLUDED state. When checking for
descriptor similarity, a distance- and time-based occlusion_term is
added to the similarity for descriptors in this state, significantly
increasing the chance that RelD is successful. The magnitude of
occlusion_term is based on the number of frames time the descrip-
tor has not been tracked and the distance dist between the occluded
and the current descriptor:

0, if time > Iimez7za,x7
0, if dist > distyy + —12<

timemax

time .
(1 timemax ) valmax, otherwise.

occlusion_term = - dist paciors

Using test videos, we heuristically determined good values for
the constants to be time,,,, = 60, val,,.. = 0.3, dist,,;, = 0.5, and
distacror = 1.0.

In a final step, the RelD component generates a low-resolution
User ID Bitmap (in our prototype: 256x128 pixels) in screen coor-
dinate space from the tracker’s segmented bitmap and the tracked
user IDs. This bitmap contains only those users close enough to
the wall to touch it and is sent to the TouchProcessor. Additionally,
skeleton data of all currently active users is sent to allow correlation
of touches with occluded users and enable applications to react to
user movements.
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LEG_HISTOGRAM 0.30
TORSO_HISTOGRAM | 0.40
HEAD_HISTOGRAM 0.05
FOOT_HISTOGRAM 0.00

Figure 5: Features used for re-identification with weights de-
termined through optimization. Grey rectangles group features
pertaining to the same human measurement. Features without
weights were discarded due to high intra-person variance, fea-
tures with weight 0 discarded during optimization.



4.1.2 Optimization

We optimized the feature weights (w; above) using a training
data set consisting of 36 subjects (9 female, ages 21-49), with two
interaction sequences recorded per person. Each interaction se-
quence consisted of the person entering the tracking area, touching
a series of 20 targets that successively appeared at random screen
locations, and leaving the tracking area again.

For optimization, we built the database using the first set of 36 in-
teraction sequences, then attempted re-identification using the sec-
ond set. The optimizer then performed an exhaustive search on the
solution space at 5% intervals, determining how many users fell
into the categories correct, incorrect, and not_matched for each
combination of weights. Additionally, we were interested in min-
imizing the number of unknown users incorrectly matched with a
database entry. To this end, we removed one user from the database
and probed with this user (again repeating for all users and feature
weights). If a user was reported as found in the database, this was
recorded as false_positive.

We determined optimal weights by minimizing the function

Jwin = 0.5 - not_matched + incorrect + false_positive

This prioritizes reported match failures over incorrect matches.
Resulting feature weights are shown in Figure 5. For this combina-
tion of weights, the results were correct = 30, incorrect = 0, and
not_matched = 4, while false_positive = 2.

Fixing feature weights, we additionally evaluated sensitivity to
varying descriptor similarity thresholds, the ReID time limit, and
the number of histogram bins, with results shown in Figure 3. Sev-
eral tradeoffs become apparent. First, a smaller similarity threshold
results in more correct matches, but also increases the number of
false_positive matches. An optimum can be found around 0.80.
Increasing the RelD time limit also improves the number of correct
matches. At the same time, the number of false_positive matches
increases with a larger time limit. Additionally (and not visible in
the graph), the time limit directly determines how fast new users
are identified, prompting us to set it to 30 frames (= 1 second).
Regarding histogram bins, there is a large good interval starting at
around 30 bins. Our prototype uses 32 bins.

4.2 TouchProcessor

The TouchProcessor takes the User ID Bitmap and the skeleton
data generated by the ReID Component and uses these to correlate
touches on the wall to users. In a first step, the User ID bitmap
is used. If the first step fails, skeleton data — including histori-
cal skeleton data of occluded people — is used, making the process
more robust. Hand association is done using skeleton data as well.
Note that the user may be in UNKNOWN_TRACKED state. In that
case, the identification has failed. Figure 6 visualizes these pro-
cessing steps.

To associate a touch with a user and hand, a number of operations
are performed. The image-based mapping step begins by removing
noise in the User ID Bitmap using a morphological closing oper-
ation. The touch position is then projected onto this bitmap and

User Correlation Unknown user

and hand id
No ID
>0
Image- No ID| Skeleton-
@»| based [» based ID Hand
correlation D correlation [ 1 Mappi Known user
pping :
and hand id

Figure 6: TouchProcessor steps for associating a touch with
user and hand.

a small window around the touch (in the prototype: 5 pixels, cor-
responding to around 10cm) is searched for users to assign to the
touch, with the closest user being selected if there is more than one
user in the window (Figure 8a shows an example). If this does not
succeed, the closest skeleton neck joint within 80cm is determined
and its user associated with the touch (example in Figure 8b). In
the event that this does not succeed either, the touch is left without
an assigned user.

For touches with associated users, the TouchProcessor attempts
to determine the touching hand. This algorithm uses a number of
heuristics that depend on the number of hands tracked with high
confidence by the RGBD camera. If both hands are tracked, we
simply choose the one with the closest distance. If only one hand
is tracked, and this hand is within 25cm of the touch, this is the
touching hand. Otherwise, we assume that the untracked hand is
touching. This covers the common case a user touching the wall in
front of her body while the other hand rests at her side, e.g., visible
in Figure 8a. As fallback, we use the body center as dividing line
to determine the hand.

Finally, the TouchProcessor sends touch events enriched with
User IDs to the application. The skeleton data received from the
RelD component is forwarded to the application as well, thus al-
lowing it to support body-centric interaction.

5. DEVELOPMENT SETUP, TOOLS, AND
METHODOLOGY

We developed YouTouch! using a display wall with total dimen-
sions of 5x2 meters and 24 megapixels resolution, consisting of
twelve 55" touch-sensitive displays. The RGBD camera was placed
at 2.4m height and a distance of 4.4m from the wall, maximizing
viewable area while minimizing occlusions.

To allow for efficient iterative development, we put significant
effort into a versatile test toolset. At the heart of the toolset is a
recording and playback application (Figure 7) that is able to handle
the full set of image and tracking data (RGB, depth, and segmen-
tation images as well as skeleton data) in addition to touch data.
The tool supports fast-forward playback and includes pause as well
as single-step functionality. To avoid any issues with compression
artifacts influencing the system, videos were encoded losslessly us-
ing the huffyuv codec. Complementing this playback tool, we im-
plemented a debug view application that shows the output of the

nj Streams - DS

Figure 7: Screenshot of the Recorder and Playback application
used for development and evaluation. We show a) RGB im-
age, b) Depth image, c¢) User ID Bitmap, and d) Skeleton joints
of users with associated IDs, and enable playback, pause and
single-step of recorded tracking data.



Figure 8: Typical scenario images (top: RGB and bottom: segmented, with touch positions marked by cross hairs in both images)
showing successful a) image-based touch ID, b) skeleton-based touch ID and c) touch ID using occluded skeleton, as well as d)
unsuccessful Kinect tracking (two people tracked as one) causing touch ID failure.

TouchProcessor, including User ID bitmap, skeletons with IDs, and
touch event data (Figure 1b). Both the playback tool and the debug
view application run without a connected camera or touch-sensitive
wall. In combination, they allow swift reproduction and pinpoint-
ing of issues on development workstations; interesting situations
can be replayed at will and the effects of algorithm changes judged
quickly.

6. EVALUATION

Employing the development setup described in the previous sec-
tion to record and evaluate videos of users, we measured the perfor-
mance of the complete YouTouch! system — including RelD, touch
association, occlusion handling, and hand determination. The main
study goals were to determine the effectiveness of the user-touch
association as a whole as well as the effectiveness of different sys-
tem components. In addition, we wanted to estimate the potential
for further improvements by analyzing the causes of the remaining
identification errors.

6.1 Procedure

Users participated in two different group interaction scenarios.
In each scenario, we successively presented 20 sets of touch targets
to the users at random positions on the screen. Targets were user
specific and marked with a User ID as well as the hand to use. After
all targets of a set had been touched, a new set appeared.

The first scenario was designed to maximize user movement as
well as short-term occlusions. Groups were composed of 4 users,
with one touch target per user in each set. The second scenario
additionally required participants to leave and re-enter the tracking
area regularly to further stress the ReID component. In this sce-
nario, groups were composed of 5 users each, with touch targets
for 3 of them displayed in each set. Users without targets were
asked to leave the tracking area and re-enter when a corresponding
target appeared. A total of 45 users in 9 groups (15 female, ages
22-29) participated in the scenarios. Thus, our data set contains 9
groups - (20 sets - 4 targets + 20 sets - 3 targets) = 1260 touches.

Note that the evaluation videos and the videos used for RelD
optimization were recorded using different users to prevent skewed
results due to possible overfitting in the optimization step.

The scenarios were designed for maximum stress to the system.
Since the positions of the targets were random, participants needed
to exchange places often: We calculated a minimum of 528 (Sce-
nario 1) and 450 (Scenario 2) position switches from the touch data,
causing large amounts of occlusion. Difficult situations like the one
in Figure 8b, where three users interact in very close proximity, are

common. In comparison, Jakobsen et al. [16] found a total of 53
position switches on average in two-person wall interaction scenar-
ios lasting 90 minutes.

6.2 Results

We used these data sets to evaluate the system’s performance in
several configurations and recorded the number of correctly and
incorrectly as well as unmatched users for each of them. We evalu-
ated the following configurations:

e No RelD: A baseline configuration with RelD turned off
(i.e., a new ID assigned to each newly tracked user), using
skeleton-based touch correlation.

e Raw RelD: A configuration that performed full ReID but
used only basic (i.e., image-based) touch correlation. Oc-
clusion tracking was turned off.

e Full System: All components enabled for maximum effi-
ciency.

The results (Figure 9) show the major impact of the RelD algo-
rithm. Although not statistically significant, we can see some addi-
tional improvements through the occlusion tracking and touch cor-
relation heuristics. Considering the amount of movement and oc-
clusions, the performance for Scenario 1 was very good and points
towards usability in general application cases. Performance in Sce-
nario 2 was still good, with some additional issues caused by par-
ticipants constantly leaving and re-entering the tracking area.

Figure 8 shows several typical example frames from the evalua-
tion that highlight the capabilities of the system. Frame a) shows

Scenario 1

100.0¢ 100.0% Scenario 2

o @
o o
o o
X X

Percentage of touches
N
o
)
X

0.0% 0.0%
" No Re-ID Raw RelD Full System ° No Re-ID Raw RelD Full System

[ User correct M User unmatched [ User incorrect

Figure 9: Touch User ID performance by algorithm. The
dashed horizontal line shows the maximum performance possi-
ble without improving the RGBD camera’s tracking system.



a simple case: Users are clearly segmented and there is no occlu-
sion, so image-based touch correlation succeeds. In frame b), the
touching user is partially occluded, causing image-based correla-
tion to fail. Skeleton-based correlation, however, succeeds. Owing
to occlusion, the touching user is completely untracked in frame
c). However, there is a descriptor of the user in OCCLUDED state,
and skeleton-based correlation using this descriptor succeeds. Fi-
nally, in frame d), Kinect segmentation has failed and is reporting
two persons as one. In this case, touch correlation fails as well and
reports the wrong user.

In addition, we were interested in the causes of the remaining er-
rors. To this end, we stepped through the videos frame by frame in
the vicinity of each error using our development system and manu-
ally categorized the failures according to the part of the system that
failed. As can be seen in Table 2, more than 2/3 of errors were di-
rectly caused by the Kinect’s tracking system. Many were related to
touches that happened when the person was not tracked at all by the
Kinect, with additional errors due to mis-segmentation of several
people as one person and Kinect IDs moving from one person to
another. The remaining major causes for errors were RelD failures
(generally resulting in a new ID being assigned) and RelD that was
still in progress (i.e., descriptor in UNKNOWN_TRACKED mode).
The number of Kinect tracking failures also give us a maximum at-
tainable performance when using the Kinect’s tracking component,
shown as a horizontal bar in Figure 9. Finally, they highlight the
effectiveness of the secondary components of our system: In Sce-
nario 1, half of the errors not caused by Kinect tracking failures
are corrected going from the Raw RelD configuration to the Full
System configuration.

7. DISCUSSION

The main result of the evaluation is very encouraging. Given
an error rate of under 13% in a demanding data set, we believe
that YouTouch! should be usable in a number of general appli-
cation scenarios. Informal tests using our sample drawing appli-
cation confirmed this: We had only few RelD and touch corre-
lation failures. Human territorial behavior will probably prevent
most tracking failures in serious contexts [16]. However, we as-
sume that the system will not be accurate enough in cases where
users move quickly in close proximity, such as in movement-based
games. Since identification is largely based on clothing worn, it is
also clear that we can not expect IDs to outlast clothing changes
— and that it is not suitable for groups of users wearing the same
clothing (e.g., uniforms). On the positive side, this should also al-
leviate any privacy concerns: Users are not identified permanently,
nor are IDs unique enough to distinguish more than a few dozen
users.

In crowded situations, YouTouch! will likely fail because of the
large amount of occlusion (and in the current prototype, because the
Kinect’s tracking component is limited to six simultaneous users).
In these cases other (e.g., marker-based) methods must be used as
fallback. On the other hand, while we did not test this formally,
YouTouch! should be somewhat resilient to lighting changes, since
the person descriptor is based on a sliding average and will hence

| Scenario 1 Scenario 2

Correct 87,1% 74,1%
Kinect tracker error 8,9% 17,6%
RelD error 2,5% 7,5%
TouchProcessor error 1,5% 0.8%

Table 2: Causes of remaining User ID errors. Note that the
Kinect’s tracking component is responsible for the majority of
un- or misattributed touches.

adapt automatically. Furthermore, our analysis of User ID errors
shows that we are reaching the point of diminishing returns with
the current Kinect-based tracker. We have not formally evaluated
our hand detection method; this is left for future work.

While we are confident that the camera angle we chose allowed
for efficient recognition, experiments with different camera angles
should be easy. Generally (unless the user base or the camera an-
gle is significantly different), it should not be necessary to repeat
our optimization step. Finally, YouTouch! is easy to set up and de-
ploy and only requires mounting the Kinect and following a simple
calibration procedure to establish the position of the wall.

8. CONCLUSION

We presented YouTouch!, a low-cost and reliable method that
enables user-specific interaction at a large display wall. We track
users by means of a commodity RGB + depth camera placed facing
the wall. Person descriptors containing both color histogram data
and anthropometric measurements allow re-identification of users
after tracking has been lost, and specialized handling ensures high
performance in the case of short-term occlusions. Touches are as-
sociated with people using both image and skeleton data, allowing
even touches by users that are not currently tracked to be handled.
We thoroughly optimized and evaluated the system using video and
tracking data with a total of 81 subjects, showing good performance
even in demanding conditions.
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