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Figure 1: Different aspects of the design of our user studies: (A) and (B) show a subject sitting in front of two background
configurations. (B) illustrates subjects solving a task on the shown visualization in front of background BG4, while (C) depicts
a question on BG3. (D) shows three additional displays (indicated by purple squares) with different signal colors and numbers
that simulate a secondary observation task for the second study.

ABSTRACT
In this work we report on two comprehensive user studies inves-
tigating the perception of Augmented Reality (AR) visualizations
influenced by real-world backgrounds. Since AR is an emerging
technology, it is important to also consider productive use cases,
which is why we chose an exemplary and challenging industry
4.0 environment. Our basic perceptual research focuses on both
the visual complexity of backgrounds as well as the influence of a
secondary task. In contrast to our expectation, data of our 34 study
participants indicate that the background has far less influence on
the perception of AR visualizations. Moreover, we observed a mis-
match between measured and subjectively reported performance.
We discuss the importance of the background and recommendations
for visual real-world augmentations. Overall, our results suggest
that AR can be used in many visually challenging environments
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without losing the ability to productively work with the visualiza-
tions shown.
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1 INTRODUCTION
Augmented Reality (AR) is of rising interest due to significant tech-
nological advances and commercial products being increasingly
available. In the future, the use of AR can be expected to pervade
many different areas of our daily life. As this technology gets more
common in everyday life, the importance to understand how in-
formation displayed in AR should be presented increases. In the
past, AR research often focused on displaying additional 3D ob-
jects or simple visual elements like text [48]. In comparison, we
can observe a rising interest in the effective integration of more
complex and even abstract information into real-world scenes. This
is exemplified by trends such as situated, embedded [16, 48, 56],
and immersive analytics [37] as new areas of data visualization.
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The immersive visualization research community is quite active
with regard to these topics [20, 27]. However, we are still faced
with many open questions [5, 27] to answer, among them how
humans perceive information presented in AR [17, 30]. To con-
tribute to answering this question, we focused on how real-world
environments, which are always present in AR, might influence
this very perception. This understanding can further help us to
make informed decisions on how and where information can be
presented in AR. This is especially necessary if we want to elevate
AR technology to a tool that cannot only be used in casual everyday
situations, but also in productive scenarios, like modern production
plants. For such a tool, it is essential to present information not
only with simple visual representations (e.g., text), but also in a
more advanced and complex presentation style as it is common
with data visualizations.

Information visualizations (e.g., line charts or scatterplots) show
abstract and often complex data by means of combining different
rather simple visual elements (e.g., text, lines, bars). The perception
of such elements has already been studied, and design recommen-
dations were presented as well [19, 24]. However, to the best of
our knowledge, a deeper understanding on how more complex vi-
sualizations are perceived in AR is lacking. This gap is especially
crucial to be closed for immersive analytics [37] applications that
use AR to generate insights often directly linked to real-world ob-
jects. However, other application domains would also benefit from
findings in this research area. Traditional use cases for AR range
from instructions, over manuals to training (an overview can be
found in [53]). Tourism [28], education [57], and even grocery shop-
ping [1, 7] are further possible scenarios. All those differ regarding
their real-world environments, including the background, noise, or
lighting. Some use cases are more demanding and challenging than
others. While use cases like tourism often focus on a more casual
interaction, AR application for industrial scenarios have the clear
goal to use AR as a productive tool. When operators have to observe
complex data (e.g., trend charts) augmented to several machines,
they are also faced with complex visual backgrounds. Inspired by
the wish for productive tools in the challenging industrial context
of AR visualizations, but not limited to this domain, we want to
better understand the influence of the background scene in the
perception of AR visualizations.

In this paper we present two user studies with a total of 34
participants conducted in an experimental production plant (see
Fig. 1). Our first study solely focused on the influence of the visual
background. However, this does not fully reflect a real-world use
case, since operators often have to interact not only with the pre-
sented AR content, but also with the machines in front of them. For
this reason, we added a secondary observation task coupled to the
background for the second study to simulate such a scenario. Most
of the current research that investigates AR takes place in strictly
controlled laboratory environments and often uses 2D pictures of
3D scenes as visual backgrounds (as seen in [34, 35]). Instead, we
focused on one real-world scenario for our studies: industrial pro-
duction plants. However, we took care to enable the generalization
of our findings to other settings and domains. The results of our
studies show an unexpected result: real-world backgrounds have far
less influence on the measured performance than expected. Having
said that, the subjective reports of our participants reveal that the

perceived influence differs from the measured one. We understand
our work as part of a research agenda to make Augmented Reality
– and AR visualizations in particular – truly usable as a productive
tool in real-world contexts.

In summary, with this paper we contribute:
• Two user studies conducted in a real-world experimental
production plant. Both use industrial 3D scenes as back-
grounds.1

• Insights on how strong the influence of the visual back-
ground on AR augmentation is. This includes both the sub-
jectively perceived and objectively measured influence.

• Findings about how the influence of the visual background
is altered with the introduction of a secondary observation
task.

• A discussion of the results and recommendations for visual
real-world augmentations.

2 BACKGROUND AND RELATEDWORK
Our studies focus on the perception of information visualization in
Augmented Reality (AR). Subsequently, our work relates to three
main topics: perception in AR, AR visualizations, and AR in indus-
trial scenarios. The last topic was chosen to reflect on an exemplary
usage of AR visualizations as a productive tool.

2.1 Perception in Augmented Reality
AR technology enables the enrichment of the real world with addi-
tional digital information. This can be done either by overlaying
visual elements in the field of view of the user (optical see-through)
or by embedding the new information in a video stream that will be
shown to the user (video see-through). Even though the AR research
community is quite active [27], there are still open question to be an-
swered as proposed by Kruijff et al. [30], Billinghurst et al. [5], Kim
et al. [27]. Those surveys in addition to Erickson et al.’s review [17]
show that only a few research projects focus on information visual-
izations and their perception in AR. The existing research papers
mostly investigated fundamental topics, such as depth perception
and handling of occlusion [22], color perception [33], and automatic
color correction [12]. Lu et al. [34, 35] had a deeper look on how
attention can be controlled through subtle cues in AR scenes. In
general, perceptual experiments mostly investigated those effects
on pictures of 3D scenes. Lu et al. [34] recommended conducting
perceptual experiments with optical-see-through devices and there-
fore in real-world scenes. Further, they used Feature Congestion
(FC) [46] as a measurement of how cluttered a visual background
is. This value is based on color, luminance, and orientation features
of the image. We also use this value as a guideline for selecting
appropriate background scenes.

A more applied view on perception in AR can be seen in differ-
ent research projects with focus on basic visual elements, like text.
Thereby the style of text and background [14, 19, 23–25, 29] or the
placement of text labels [4, 36, 43] were often investigated. There
is also work attempting to automatically determine the legibility of

1We provide most of the study data as supplemental material, including the question-
naire data, task descriptions, logged study data, and analysis scripts on our project
page https://imld.de/ar-vis-perception.
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text in correlation to the background it is placed on [31]. In general,
those research works show that white text on blue background is
the best choice, but it is not clear how the findings can be trans-
ferred to different and more complex visual objects like information
visualizations. Further, the placement of labels only focused on con-
nections between the real-world environment and the digital data.
Information visualizations often contain a combination of text and
additional visual elements, and use visual variables like color as a
property to represent or highlight data.

One exemplary paper that investigated such visualizations can be
seen in the work of Büschel et al. [8]. In their work, they focused on
edge visualization in graphs and how different edge types perform
in a graph analysis task in AR. They did not investigate how the
visual background could influence their findings. However, they
asked the participants if they were influenced by the background,
which was answered with no. Another recent research project
from Whitlock et al. [55] investigates how data visualizations are
interpreted by the users. They compare different display types
including a head-mounted AR display (video-see-through). The
participants in their study had to solve different tasks for 2D and
3D scatterplots and bar charts. The results show that navigation
in AR performed better than other display types, while color was
harder to distinguish due to the influence of the color of real-world
objects.

2.2 Information Visualization in AR
AR can make digital information immersive by introducing it di-
rectly into real-world environments. This capability is researched
by situated, embedded [16, 48, 56], and immersive analytics [37, 50].
Situated visualization “is a data representation whose physical pre-
sentation is located close to the data physical referent” [56], while
embedded visualization directly places the information as an over-
lay on the corresponding physical referent [56]. Marriott et al. [37]
describe immersive analytics as “the use of engaging, embodied
analysis tools to support data understanding and decision making”.
Visualizations, like line charts or network graphs, can be one com-
ponent of such analysis tools. A few examples exist that extend a
display-based analysis software with augmented reality content
[9, 45, 54]. The former investigate analysis in a collaborative sce-
nario, while Wang et al. [54] try to understand the general concepts
of hybrid analysis setups. To truly be able to use and to optimally
design such visualizations in AR, it is necessary to understand how
the environment can influence perception. Therefore, we designed
our studies to contribute to the knowledge about this influence.

To easily create visualizations for AR devices like the Microsoft
HoloLens, several frameworks were introduced in the past years.
All are based on the Unity 3D engine. While ImAxes [11] only
creates axes that can be linked with one another, DXR [49] and
IATK [10] allow the generation of axis-based visualizations with
different visual marks for the data. u2Vis [45] presents a more
generic framework which can also be used for and in combination
with large displays and desktop environments. Lastly, CollARVis [6]
presents a visualization framework for collaborative scenarios. To
our knowledge, these frameworks were not evaluated with regard
to their perception.

2.3 AR for Industrial Use Cases
AR head-mounted displays can be used in various application areas
due to their form factors. They enable the user to free both hands for
the interaction with the real-world environment, show customized
representations, and create a greater immersion due to visualiza-
tions placed inside the real-world. Those properties seem to be
especially useful for scenarios, where such applications should be
used as a productive tool in industrial scenarios [13, 21, 39]. Several
research projects focus on the use of AR in such use cases and inves-
tigate text legibility [19, 24], the recognition of industrial machines
and modules in front of AR applications [2, 51], or guidelines and
challenges for the user interface design [42]. Paelke et al. [42] see
a greater need for user-friendly applications (similar to web and
mobile apps) and assistance for a wide range of users. Additionally,
they present a set of interaction and visualization techniques that
are needed in such systems, including process-oriented and context-
sensitive information representations. Other research focused on
more specific use cases like maintenance [39], assembly [53] or
CNC milling [32]. All the current research papers also show that a
wide variety of dynamic parameters, application areas, users, and
specialized use cases make industrial-scenarios quite challenging.
Lastly, AR tools in such use cases have the overall goal to create a
productive working environment. For this, Cardoso et al.’s survey
[13] show that AR reduces execution time and improves the overall
quality besides other factors.

3 STUDY 1: INFLUENCE OF BACKGROUNDS
AR applications in an industrial scenario will always exhibit various
real-world backgrounds. It is necessary to investigate the influence
of those backgrounds to allow AR visualizations and application
to reach and even surpass currently used productive tools in per-
formance and user-friendliness. However, we believe that the un-
derstanding of this influence can also be transferred to different
use cases. Every AR visualization is and will be placed in different
real-world environments and therefore has to be fitted to the respec-
tive backgrounds. Additionally, the concept of visual perceptual
load, which describes “that perception has a limited capacity, which
automatically proceeds until exhausted” [40], could influence the
visual primary tasks presented in AR since “task-irrelevant stimuli
are still processed to an extent that enables them to affect perfor-
mance in a primary task” [44]. With this goal in mind, we created
the first study. In order to investigate if the background has an
influence on the measured and perceived performance, our subjects
analyze visualizations with varying numbers of data points shown
on different background scenes.

3.1 Design & Hypotheses
Since we aimed to answer the question wether the background in
AR applications has an influence on the perception of information
visualizations, we focused on two independent variables. Those
are the background (BG1, BG2, and BG3 as seen in Fig. 2) and the
visualization complexity (presented by the number of data points
in each visualization: 40, 50, 60a, 60b, and 70). The different back-
ground configurations, which were motivated by the wish to better
understand the influence of dynamic and real-world backgrounds
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BG1 BG2 BG3 BG4

S1FC=2.06 S1FC=2.90 S1FC=5.36 S2FC=5.65 S2FC=2.75

Figure 2: All background configurations used in both studies. BG1, BG2 and BG3 were used in the first study. BG3 and BG4
were used in the second study. BG4 also shows the placement of the additional displays. The placement is similar to BG3 (see
Fig. 1d). The displayed FC values are the mean of all images taken from the HoloLens v1 in each session for each study (S1 for
Study 1, S2 for Study 2).

[17, 27, 34], were used as a between-subject variable. The visual-
ization complexity, motivated by the visual complexity which can
increase the overall visual load [38, 41], was altered within each
session. We measured the following dependent variables: task com-
pletion time, error values (as absolute error and percentage error),
and questionnaire data. Lastly, we distinguished between different
analysis tasks based on the low-level analysis tasks presented by
Amar et al. [3].
We generated four hypotheses to guide our research:

H1 Solving tasks on backgrounds with elements that are more
complex (by means of visual clutter) performs worse. A more
distracting background will interfere with the overall per-
ception of the shown visualizations.

H2 Solving tasks on visualizations with higher complexity per-
form worse. With more data points to analyze, the subjects
will take longer and eventually give more incorrect answers.

H3 The negative effect of the background will be more visible
while the subjects solve tasks on visualizations with higher
complexity due to the overall increase of visual complexity.

H4 Subjects perceive the backgrounds with more clutter as
more distracting.

3.2 Participants
We recruited 21 unpaid participants per word-of-mouth for our
study. We had to exclude three runs due to headaches of one sub-
ject and problems with the state of one of the background modules
for the other two. The remaining 18 participants (11 female, 7 male)
were students from media informatics, media research, and com-
puter science of our local university. The average age was 21 years
(M = 20.89 years, SD = 2.11 years) and the self-reported height
ranged from 162 cm to 198 cm (M = 173.05 cm, SD = 9.38 cm).
No specific knowledge was required to participate in this study.
All participants had normal or corrected-to-normal vision and had
no color vision defect or spatial perception difficulties. On a five-
step scale, all participants had less experience with AR in general
(M = 2.17, SD = 0.92), no experience with AR via head-mounted
displays (M = 1.17, SD = 0.38), no experience with Virtual Real-
ity (M = 1.61, SD = 0.70) and some experience with the use of
visualizations (M = 2.72, SD = 0.89) in general.

3.3 Setup
The study was conducted in an experimental production hall with
a real-life modular chemical plant inside. We created our back-
grounds (see Fig. 2) based on the Feature Congestion (FC) value
[46] and some visual characteristics. The FC is a single value that
is computed through a combination of the color, luminance, and
orientation map of a given image (for this, we used the Piranhas
Toolkit [15]). The smaller the value, the less clutter is present in
the image. In general, we not solely relied on the FC value to define
our backgrounds, but we also used our human judgment based on
different characteristics, like motion, uniformity, or overall color.
After we tested several background configurations in the industrial
production hall, we chose two sufficiently different backgrounds
(BG2, BG3), while the third (BG1) was added as a baseline. BG3
shows moving green water, additional LED stripes, and an overall
uniform design, with slightly angled pipes. On the other hand, BG2
has two different sections. The left side is quite uniform, while the
right side is highly cluttered with cables. The FC values for the
backgrounds, calculated as an average out of all images taken in the
session for each participant, are: FC(BG1) = 2.06, FC(BG2) = 2.90,
and FC(BG3) = 5.36 (see Fig. 2). As typical for many real-world
scenarios (outside a clean, controlled laboratory) the noise of the
environment and machines, the temperature in the production hall,
the lighting, and the presence of other people were hard to con-
trol. To minimize disturbances in our study sessions, we took some
precautions like informing the staff and blocking the specific area
in the hall. However, the module used in BG3 created a constant
noise and some people worked occasionally at the same time the
experiments were conducted.

For our study, we built two different applications: an AR client
application used by the subjects and a server application controlled
by the investigator. The AR application was developed for the
Microsoft HoloLens v1, which has good image quality but a rather
small field of view of approximately 30 degrees diagonally. The
client application was implemented using the Unity 3D engine
and the IATK framework [10], which we modified to better fit
to our needs. To interact with the application, the participants
used a Microsoft Clicker. We chose the Clicker to minimize gesture
recognition problems, fatigue of the arm and the learning procedure
for the subjects. While the participants were seated at a distance
of approximately 2.5 m in front of the backgrounds (see Fig. 1a),
the application showed questions (see Fig. 1c) and the visualization
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A B

Figure 3: Line charts in front of the background from both studies. (A) was used in the first study (complexity of 60 data points
with 10 x-values and 6 lines), while (B) was used in the second one (with a static amount of 35 x-values and 4 lines). Further,
(A) shows BG2 and (B) BG4.

(see Fig. 1b) at a height of 1.15 m above the floor. Additionally, the
visualizations almost filled the field of view of the HoloLens entirely.
The server applicationwas implemented in C#withWPF and helped
the investigator to control the experiments. This application allows
monitoring the current state of the AR application and the subjects’
interaction. Further, it logged all interactions and information the
participants generated in the experiment.

3.4 Procedure
Each session consisted of the following phases: (1) A short intro-
duction to the production hall and to modular industrial factories;
(2) A questionnaire and a declaration of consent; (3) An explanation
of the study tasks and interaction vocabulary; (4) The calibration of
the HoloLens to the subject and a short training (four tasks); (5) The
conduction of the experiment; (6) Final questionnaire regarding the
experiment and the perceived influence of the background. One
investigator who was in the production hall but was seated outside
the field of view of the participants led the experiment. He only
interacted with the participants during the experiment if they had
any questions, wanted to answer an analysis task, or some technical
problem occurred (e.g., with the input device).

Each click with the Clicker advanced the session to a different
state. A hold of 1 s allowed the subject to orally give the answer
to the previously shown analysis task. We chose an oral answer
method to reduce the number of needed interaction devices and vo-
cabulary. The session advanced to the next analysis task or question
block after the investigator entered the given answer. Altogether,
each session lasted approximately 51 min (M = 51.38 min, SD =
8.03 min), of which 25 min (M = 25.07 min, SD = 5.40 min) were
needed for phase (5) of the study.

3.5 Tasks
The participants of our study had to solve analysis tasks on line
charts (see Fig. 3a). We chose 2D line charts since they are widely
established (as considered a basic visualization by Saket et al. [47])
and often used as trend charts in industrial factories. This decision
allowed us to reduce the complexity of our experiment. The men-
tioned analysis tasks the subjects had to solve were based on Amar

et al.’s [3] low-level analysis tasks. They describe that those tasks
“largely capture people’s activities while employing information
visualization tools for understanding data”. We chose a subset of six
primitive tasks to generate a more natural set of questions. Those
are: Retrieve Value, Filter, Compute Derived Value, Find Extremum,
Determine Range, and Find Anomalies.

To generate a set of questions, we created a total of four block
types. Of those, three types contained four, while the last type
contained only three analysis tasks. The questions in one block
built on the answers of the preceding analysis task to allow a more
complex analysis. Each block was repeated five times, based on
the complexity. In each repetition, we altered small details, like the
highest or smallest value for a Find Extremum task (see Tab. 1). Each
line chart was created based on one complexity level that defines
the number of shown data points in steps of 10, altered through the
number of data points per line and the number of lines. We chose
this approach since the “Visual complexity is mainly represented
by the perceptual dimensions of quantity of objects [and] clutter”
[38, 41]. The y-value range remained constant between 0 and 50
for each complexity. In total, we created five complexity levels: 40
(5 lines with 8 x-values); 50 (5 lines with 10 x-values); 60a (5 lines
with 12 x-values); 60b (6 lines with 10 x-values); 70 (7 lines with 10
x-values). The data used in those charts were generated through a
Python script. Altogether, each participant had to solve 75 analysis
tasks (5 repetitions, each with 15 tasks).

We minimized the possible bias through training effects by coun-
terbalancing the order in which each participant had to solve all
20 blocks (5 complexity x 4 block types). For this, we used a latin-
square for both factors separately. Therefore, each participant had
to solve one block type with the five possible complexities before
the next block type was presented. Lastly, each participant was
randomly assigned to only one of the three backgrounds. In total,
each value of the independent variable background was tested by
six different subjects.

3.6 Measurements & Derived Data
As part of our study applications, we logged timestamps (e.g., start
of a block, toggle between visualization and question), different
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Number of Questions
Low-Level-Analysis Task Study 1 Study 2 Example Question

Retrieve Value 4 3 What is the Y-value at the given X-value?
Filter 3 1 How many lines have a Y-value higher than 45?
Compute Derived Value 3 2 What is the average Y-value for all Y-values of those lines?
Find Extremum 3 1 At what X-value is the highest Y-value of the selected lines?
Sort 1 What is the descending order of all lines according to their highest Y-value?
Determine Range 1 1 What is the Y-value range for those lines?
Find Anomalies 1 At what X-value lies an outlier point?
Cluster 1 At what X-value is the distance of all lines to each other the smallest?
Compare 2 Does the mentioned Y-value lie below the average Y-value of all lines?

Table 1: All used analysis tasks (based on the work of Amar et al.[3]) in our study. The numbers in the middle columns show
how many of the questions in each repetition were mapped to those analysis tasks. Lastly, the bold words in the example
questions were altered between different repetitions (e.g., higher to smaller).

events, as well as the given answers of each participant. With the
timestamps, we could calculate the time spent completing one
analysis task (in the following mentioned as task completion time).
This time was measured from first seeing the visualization (after a
new question) to the time the answer of the subject was entered
into the system. On the other hand, the answers allowed us to
calculate the error . Here we differ between absolute error , for tasks
with numerical outcome (e.g., Retrieve Value), and percentage error ,
for answers that could only be correct or not (e.g., Filter). In the
following, we will refer to both errors and the task completion time
as performance. Each session was also video recorded while the
investigator observed the participants and took notes.

The questionnaires contained a total of 40 questions. 13 questions
focused on demographic data and 19 were closed questions based
on a rating scale. The last eight were open questions. In general,
we were guided in the creation of the post-study questionnaire
by three main questions we liked to be answered: (1) Does the
task solving process have an influence on the physical state of the
user? (2) How is the background perceived by the user? (3) How
were the visualizations and their associated tasks perceived? The
closed questions are about the physical state (fatigue, concentration,
motivation, headache, dry and irritated eyes) before and after the
study, the overall recognition of the lines and axes, as well as the
perception of the visualization and the background (see Fig. 5). A
NASA TLX was also performed and is assigned to this category.
Among the open questions were: “Which particular areas of the
background caused problems to you?”, “To what extent did you
notice the background when solving the tasks?”, and “Were there
any other influences that distracted you in the study?”.

3.7 Data Analysis
Before we started to analyze our data, we checked for outliers and
replaced those with the following formula:M + 2 ∗SD (as proposed
by Field et al. [18]). A total of 7.5 % data points for absolute error
and 2.7 % for task completion time were replaced. Afterwards, our
preliminary test show that our data is not normally distributed
(Shapiro-Wilk). Additionally, we checked the equality of variance
(Levene) for the backgrounds while we calculated the sphericity
(Mauchly) on the complexities. All tests showed that the data has
no violation on the equality and one violation on the sphericity for

complexity on absolute error . Following, we used one-way ANOVAs
on the background (grouped over all questions per block), one-
way repeated measurements ANOVAs for the complexity with a
Greenhouse-Geisser correction for the violation of sphericity, and
two-way mixed ANOVAs for the interaction of background and
complexity. Further, we used Kruskal-Wallis H test for the ques-
tionnaire answers on a rating scale. In general, if we found any
significance, we calculated either pairwise t-tests or Mann-Whitney
U test with Benjamini/Hochberg FDR correction.

3.8 Results
In this section, we will present the results grouped by the generated
hypotheses, followed by additional findings concerning subjective
experiences. The results of our study is depicted in several diagrams
of our measured data (see Fig. 4) and questionnaire data (see Fig. 5
and Fig. 6).

H1 (clutter on performance) The statistic tests reveal no signif-
icance influence on the performance, as seen by absolute error
(F (2, 50) = 0.281,p = 0.7561,η2p = 0.011), percentage error (F (2, 51) =
0.086,p = 0.9175,η2p = 0.003), and task completion time (F (2, 104) =
2.408,p = 0.0950,η2p = 0.044). Additionally, Fig. 4(a) shows that
tasks solved in our baseline condition BG1 (lowest FC value) have
the fewest absolute error . Overall, solved tasks on BG3 (dynamic
background with highest FC value) were the fastest, while the sec-
ond fastest condition varies for different analysis tasks. In summary,
no significant influence of background clutter on the overall perfor-
mance was found.
H2 (complexity on performance) The statistic tests show a signifi-
cance effect on the performance, as seen by absolute error (F (4, 68) =
3.901,p < 0.05,η2p = 0.187) and percentage error (F (4, 68) = 6.362,
p < 0.001,η2p = 0.272), while task completion time (F (4, 68) = 1.144,
p = 0.3426,η2p = 0.063) did not. The t-tests for absolute error , visu-
alized in Fig. 4(b), show that both complexity with 60 data points
have the least errors. For percentage errors the t-tests present differ-
ent significant combinations (see Fig. 4(b)). In summary, our data
displays that the complexity has an influence on the error but not on
the task completion time.
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Figure 4: Different data analysis visualizations for the first study. (A) presents the absolute error, percentage error and task
completion time grouped by each analysis task and background. (B) shows the same dependent variables for the different
complexities and backgrounds. Both display the mean value and a 95% confidence interval with the whiskers. (***: p < 0.001, **:
p < 0.01, *: p < 0.05 for pairwise t-tests)

H3 (complexity& clutter onperformance) The statistic tests demon-
strate no significant interaction between background and complexity
on absolute error (F (8, 60) = 0.398,p = 0.9171,η2p = 0.05), per-
centage error (F (8, 60) = 1.518,p = 0.1702,η2p = 0.168), and task
completion time (F (8, 60) = 0.202,p = 0.9895,η2p = 0.026). Fig. 4(b)
shows again that BG1 has the least amount of errors. In summary,
the combination of background and complexity shows no significant
interaction and therefore no significant effect.
H4 (clutter on perceived distraction) The questions focused on the
perceived distraction and performance (see Fig. 5, PQ = perception
questions) show that the background has a significant effect on the
perceived influence (PQ2 and PQ3) and how well the visualizations
could be read (PQ5, PQ6, PQ7 ). All these questions signify that BG1
is the background with the least influence and distraction. The addi-
tional open question "To what extend did you notice the background
during the tasks?" also supports this. Subjects on BG1 mentioned
that the background was not noticeable (5 out of 6), while BG2
was perceived as partly noticeable (3 out of 6). The participants
on BG3 rated the background as quite difficult (6 out of 6). The
open question "What areas of the visual background caused the most
difficulties?" shows that the reflection, the lighting and the cables (1
out of 6 for each) of BG2 were recognized. For BG3 the light stripes
(2 out of 6) and the movement (2 out of 6) made it hard to read
the visualizations correctly (2 out of 6). This also caused the visual
merging of lines and the background (2 out of 6). We can conclude
that participants perceive the background conditions with a higher
FC value as more distracting.
Further findings Additionally, we analyzed the NASA TLX and the
change of the physical state over the course of the study. The first
showed no significance, while only the question regarding dry and
irritated eyes showed that the background has a significant influ-
ence (H (2) = 8.675,p < 0.05) with a possible effect between BG1
and BG3 (U = 7.5,p = 0.0814) and a significant effect between BG1

and BG2 (U = 2.5,p < 0.05). Lastly, a few subjects gave negative
comments on the field of view of the HoloLens (4 out of 18), while
some perceived the constant noise produced by BG3 as distracting
(5 out of 18).

3.9 Discussion
Overall, our results show that the background has no influence on
the measured performance (H1). However, we can see interesting
differences in each measured value separately. BG1, the background
with the least clutter, shows the best results in absolute error and
percentage error , while the other two backgrounds are quite close to
each other. Interestingly, the background with the highest clutter,
BG3, has the fastest completion time. One explanation could be
that the subjects did not invest the same effort on solving the tasks
on this background since they perceived the distraction and their
own performance on this background as rather bad. Also 3 out
of 6 subjects reported slight dizziness on BG3. This could also ex-
plain why they wanted to finish the experiment on this background
quickly. The performance values for the different complexities also
reveal an interesting result. While the task completion time increases
steadily, but not significantly, the errors show a significant effect
for the complexities (H2 and H3). Especially the complexities with
60 data points have the lowest number of errors. However, we
cannot explain why this number of data points performed better
than the conditions with less data points (40 and 50). In general,
the influence seen through the measured values differ from the
perceived influence of the participants (H4). The subjects found it
difficult to read values on the axes for BG3 due to the light stripes,
movement of the water, and the contrast difference in the scene.
However, the measured error reveal no such effect while those even
performed the fastest. Overall, we have seen that the subjects per-
ceived backgrounds with a higher FC value as more distracting
while the measured data show no support for this.
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Figure 5: Survey results of questions scored on a five-point scale regarding the overall perception (PQ = perception question).
The x-axis presents the number of participant that voted for each answer respectively. (**: p < 0.01, *: p < 0.05)

0 3 6 9 12 15 18

FC=2.63

FC=3.36

FC=2.53

FC=1.65

Rating: 1 2 3 4

Figure 6: The order the subjects chose for four additional im-
ages presenting different background configurations. Each
image has its own FC value. The rating 1 represents the im-
age with the highest perceived distraction level.

Lastly, we wanted to get a feeling on how well the Feature Con-
gestions (FC) can represent the perceived clutter of an image. There-
fore, we presented the subjects four images of background config-
urations with fixed FC values which were partly not used in the
study.2 The subjects had to rate those based on how distracting the
shown backgrounds would be to work on (see Fig. 6). The back-
ground with the highest distraction level should be placed in the
first place. The ratings reveal that the FC values do not always
match the perceived most distracting background. This can be seen
by the images with close FC values of FC = 2.63 and FC = 2.53.
While the FC = 2.63 is in the first place (M = 1.56), FC = 2.53 is
in the third place (M = 2.56). We think that not only the specific
FC value of each image defines how distracting subjects perceive a
background. Also the specific characteristics, like the light stripes
(2 out of 6 participants), moving water (2 out of 6) or the cables (1
out of 6) are quite important.

4 STUDY 2: INFLUENCE OF A SECONDARY
TASK

In our first study, the background was decoupled from the AR vi-
sualization and was only used as a visual distraction. In most of
the real-world environments, this would not be the case. Especially
immersive and embedded visualizations [16, 37, 48, 50, 56] try to
connect the shown virtual information with the real-world, as is
also the case with research focusing on AR assisted assembly tasks
2Please refer to the supplemental material for the presented images.

[42, 53]. Additionally, machines in real-life production plants often
already possess displays to show important information [51]. There-
fore, users have to alter their focus between the background and
the virtual information quite often. Overall, the second study aims
to deepen the understanding of the influence of the background on
information visualization while taking into account the forced at-
tention switch between the background and the AR content caused
by the introduction of a secondary task.

4.1 Design & Hypotheses
To understand the additional influence of a secondary task, we
designed a user study that was also conducted in a real experimental
production plant. We used the following two independent variables:
the background (BG3 and BG4 as seen in Fig. 2) and focus type (single
focus and split focus). The goal of the focus type was to increase
the attention the participants had to pay to the background, which
should increase the overall influence of the background itself. Both
variables were used in a within-subject design and allowed us to
measure the following dependent variables: completion time, error
(as absolute error and percentage error), and questionnaire data.
Further, we used a different subset of analysis tasks than in Study 1.
We focused on the following hypotheses:

H5 The clutter of the background has no influence on the per-
formance of the subjects (inverted H1 from Study 1).

H6 The performance of solving the primary task gets worse
when it is performed in the split focus condition.

H7 Solving tasks on a background with more clutter in the split
focus condition decreases the performance.

H8 The background is more noticeable for subjects when the
secondary task is introduced.

H9 Subjects perceive the background with more clutter as more
distracting (the same as H4 from Study 1).

4.2 Participants
We recruited 18 participants through e-mail and word-of-mouth
for this study. All of them did not participate in Study 1 and were
not compensated. The gathered data of only 16 volunteers could be
used for our data analysis. One sessions had to be aborted due to
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external interruptions in the production hall, while the second sub-
ject showed major difficulties at understanding the presented tasks.
All of the remaining 16 volunteers (11 male, 5 female) were students
or post-graduates with engineering background. The average age
of the participants was 24 year (M = 23.81 year, SD = 3.08 year)
and the self-reported height ranged from 162 cm to 198 cm (M =
178.81 cm, SD = 11.65 cm). Again, no specific knowledge was re-
quired to participate in this study. All participants had normal
or corrected-to-normal vision and had no spatial perception dif-
ficulties. We adjusted the colors for one subject due to red-green
weakness. On a five-step scale, all participants had generally some
experience with AR (M = 2.44, SD = 0.89), little experience with
AR via head-mounted display (M = 2.00, SD = 1.03), no experi-
ence with VR (M = 1.75, SD = 0.77) and were generally quite
experienced at working with visualizations (M = 3.88, SD = 0.72).
The volunteers also had to solve a small introductory question on
how well they could define elements in a line chart with a total
score of eight points. Only one subject had one error (mixed up
the keywords "x-value" and "x-axis") while the participant with the
comprehension problems had four errors.

4.3 Setup
Overall, this study has the same setup as Study 1 but changed and
altered the used backgrounds. To enable our secondary task design,
we added three 6 inch smartphones (two Huawei Honer 9 and one
SamsungGalaxy S4) as simulated displays of real-life modules to our
backgrounds. We therefore used the following backgrounds with
their respective FC values: FC(BG3) = 5.65 and FC(BG4) = 2.75.
We removed BG1 to reduce the complexity of the study and enable
a within-subject design. We transformed BG2 to BG4 to create a
wider background for a uniform smartphone placement between
both backgrounds. This also allowed us to increase the difference
between BG4 and BG3, since BG4 is more uniform by reducing the
open cables of BG2. The height at which the additional smartphones
were attached to the backgrounds differs between each position
with approximately 95 cm on the left, 170 cm on the center, and
140 cm on the right (see Fig. 2d).

Our AR application is the same as in Study 1, while the server
application, in addition, handles the events of the smartphones.
The smartphone application was also implemented in Unity and
only displayed a different number for each device to allow the
simulation of a secondary observation task. Those ranged from
0 to 9 and could be colored in yellow, white, blue, or red, while
green was used as a signal color (white and green were swapped
for the subject with red-green weakness) (see Fig. 1d). The number
changed in an interval of 5 s to 10 s for each display while the signal
color appeared with the next network message to any device after
a period of 90 s.

We tried to control possible disturbing factors in our setup. How-
ever, BG3 still created a constant background noise, in addition to
some people that worked in the production hall at the same time.

4.4 Procedure
Each session followed the following phases: (1) A small introduction
to the experimental environment; (2) A declaration of consent and
a first questionnaire; (3) An explanation of the analysis tasks, the

interaction with the system and both focus types; (4) Short training
with six questions and a preceded calibration of the HoloLens; (5)
The first half of the experiment on the first background; (6) A short
break with a second questionnaire regarding the first background;
(7) The second half of the experiment with the second background;
(8) A final and third questionnaire with questions connected to the
second background as well as overall questions. The experiment
was led by one investigator who was in the production hall and
was seated partly inside the field of view of the participants, due to
technical reasons.

The subjects had to interact with the system as described in
Study 1. Additionally, the subjects had to raise their hand and speak
aloud the value as soon as they saw a green number on one of
the displays in the split focus condition. Each session lasted on
average 78 min (M = 77.98 min, SD = 10.63 min), whereby 39 min
(M = 39.35 min, SD = 8.57 min) were needed for phases (5) and
(7).

4.5 Tasks
The subjects of the study had to solve analysis tasks on line charts,
like in Study 1. Our set of task types consisted of seven primitive low-
level analysis tasks [3]. Those were Retrieve Value, Filter, Compute
Derived Value, Find Extremum, Sort, Determine Range, and Cluster.
Additionally, we added Compare as a higher-level task which often
uses different low-level analysis tasks (see Tab. 1). As in Study 1,
we created three different blocks that contained four questions
each. Furthermore, the questions built onto the answers of the
preceding questions in the same block. To simulate a secondary
observation task, we introduced the focus type. The focus type had
two different states: single focus and split focus. In single focus, the
participants only had to focus on solving the primary task presented
for the visualization (as in Study 1), while in split focus they also
had to observe the background as a secondary task. The subjects
had to recognize and speak out the value of a green number (out
of 5 different colors) on one of three displays placed inside the
background configuration. The state of the focus type was switched
after half of the tasks (six blocks) in phase (5) and (7) were solved.

Like in Study 1, we used line charts as our visualization type of
choice. However, all charts were created with the same parameters:
four colored lines (red, blue, yellow, white), x-value range of 0 to
35, and y-value range of 0 to 50. The color made the lines more
distinguishable (see Fig. 3b). We created two different visualizations
for each combination of background, focus type and block. In total,
subjects had to solve 96 tasks (2 backgrounds x 2 focus types x 2
visualization x 3 blocks x 4 analysis tasks).

We again minimized a possible bias through training effects
by counterbalancing the tasks. For each subject we ordered the
four conditions created from the backgrounds and the focus type,
finishing one background before switching to the second one (for
example the order of: BG3 single focus, BG3 split focus, BG4 single
focus, BG4 split focus). We cycled through all eight possible order
combinations. Lastly, we ordered the 12 task blocks through a latin-
square, split them into groups of three, and assigned each group to
each condition, while keeping the order of analysis tasks in each
task block.
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Figure 7: Different data analysis visualizations for the second study. (A) presents the absolute error, percentage error and task
completion time grouped by each analysis task and background. (B) shows the same dependent variables for different analysis
tasks and focus type. Lastly, (C) also displays all three dependent variables grouped by each analysis tasks and the combination
of background and focus type. All bars show the mean value and a 95% confidence interval with the whiskers. (*: p < 0.05 in
(A) for task completion time)

4.6 Measurements & Derived Data
As in Study 1, we collected the answers and the timestamps for
each participants. Additionally, we logged the events connected
to the smartphone (value updates and answers for the split focus).
The derived data are also the same with absolute error , percent-
age error , and task completion time. Each session was again video
recorded while the investigator took notes accordingly. The three
questionnaires contained a total of 57 questions. 14 were assigned
to demographic data, 31 were questions based on a rating scale and
12 were open questions. As in Study 1, we used the same guiding
questions. However, in comparison to Study 1, we added questions
regarding the split focus, while we repeated the questions for phys-
ical state, the recognition of visual elements, and the perception of
the background after each individual background. Lastly, we added
five closed question for the focus task regarding the influence on
the main task (see Fig. 8).

4.7 Data Analysis
As in our first study, we checked and replaced outliers (2.5 % for
absolute error , 4.3 % for task completion time) in our data with the
following formula:M + 2 ∗ SD (as proposed by Field et al. [18]). We
checked our data with preliminary tests before we analyzed them
further. For this, we tested for normal distribution (Shapiro-Wilk),
which was never the case, and sphericity (Mauchly), which was

never violated, for the background and focus type separately. We
used one-way ANOVAs on the background and focus type, while
calculating two-way repeated measurements ANOVAs on the com-
bination of background and focus type. Further, we use a Friedman F
test for the questionnaire answers on a rating scale. In general, if we
found any significance we calculated pairwise t-tests or Wilcoxon
W tests.

4.8 Results
This section reveals the results of our second study, ordered by the
presented hypotheses. They are depicted in visualizations of our
measured data (see Fig. 7) and questionnaire data (see Fig. 8 and
Fig. 9).

H5 (clutter onperformance) The statistic tests show no significance
effect on absolute error (F (1, 15) = 0.418,p = 0.528,η2p = 0.027) and
percentage error (F (1, 15) = 0.850,p = 0.371,η2p = 0.054) while
a significant influence can be seen for the task completion time
(F (1, 15) = 5.407,p < 0.05,η2p = 0.265). Further, Fig. 7(a) shows
that BG3 has always less absolute error than BG4, while this order
changes for percentage error with different analysis tasks. In sum-
mary, the performance is only partly influenced by the background
clutter.
H6 (focus condition on performance) The statistic tests display
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no significance effect on the performance values absolute error
(F (1, 15) = 0.514,p = 0.484,η2p = 0.033), percentage error (F (1, 15) =
1.338,p = 0.266,η2p = 0.082), and task completion time (F (1, 15) =
0.298,p = 0.593,η2p = 0.019). However, Fig. 7(b) depicts that less
absolute errors appear in the single focus, while this changes be-
tween different analysis tasks for the percentage error . In summary,
the focus type shows no significant influence on the performance of
the subjects.
H7 (clutter & focus type on performance) The statistic tests reveals
no significant interaction between background and focus type on
absolute error (F (1, 15) = 0.022,p = 0.6454,η2p = 0.014), percentage
error (F (1, 15) = 0.657,p = 0.430,η2p = 0.042), and task completion
time (F (1, 15) = 0.305,p = 0.589,η2p = 0.020). Fig. 7(c) shows that
the analysis tasks perform differently in split focus than in single
focus. Interestingly, the way how the secondary task influenced the
analysis tasks differs. Some increased the error and needed more
time, while others reduced both. In summary, there is no significant
interaction between the background and the focus type regarding the
performance of the subjects.
H8 (focus type on perceived distraction) The questionnaire con-
tained five questions regarding the additional focus type (FQ =
focus question), as seen in Fig. 8. Overall, the subjects perceived
that the split focus condition made it more difficult to solve the
main task (FQ1:M = 2.38, SD = 0.96) as it needed some additional
attention (FQ4:M = 2.69, SD = 1.12). The secondary task increased
the perceived task completion time (FQ2: M = 3.06, SD = 1.12),
while the given answers were only slightly influenced (FQ3:M =
1.88, SD = 0.89). We can conclude that the split focus condition
increased the awareness and the influence of the background for the
subjects.
H9 (clutter on perceived distraction) Our collected questionnaire
data regarding the perception (PQ = perception question) of the
background (see Fig. 9) shows no significant influence on the per-
ceived distraction or performance. However, a small difference
between both backgrounds exists. BG4 is overall perceived less dis-
tracting than BG3, the background with dynamic elements and
additional light. This is especially true for PQ2 (Q(1) = 3.267,p =
0.0707), PQ3 (Q(1) = 1.923,p = 0.1655), and PQ7 (Q(1) = 2.571,p =
0.1088). We further asked the participants to choose which of the
backgrounds was more difficult to work in. 13 out of 16 partici-
pants chose BG3. The light stripes (4 out of 16), the pipes (4 out
of 16), the water movement (6 out of 16), and green color (4 out
of 16) were stated as the main reasons for this. On the other hand,
BG4 was perceived as only slightly distracting (6 out of 16), which
changed with the introduction of the split focus (3 out of 16). The
sun light through a window in the background (5 out of 16), as well
as the reflection on the smartphones (2 out of 16) were the most
distracting factors. We conclude that the background clutter has no
significant influence on the perception. However, the open questions
and comments depict a strong tendency that BG3 was perceived as
more distracting.
Further findings Additionally, we analyzed the physical state be-
tween each background as we did in Study 1. This time, we could
not find any significant influence regarding the different questions.
We also looked at the number of times the participants reported

 M  =2.38
 SD=0.96

FQ1: The additional observation task for the background made it harder for me to solve the main task.

 M  =3.06
 SD=1.12

FQ2: The additional observation task for the background let me took longer to answer the questions.

 M  =1.88
 SD=0.89

FQ3: The additional observation task for the background made my answers for the tasks less precise.

 M  =2.06
 SD=1.12

FQ4: The additional observation task for the background needed a great portion of my attention.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 M  =2.69
 SD=1.35

FQ5: The additional observation task for the background made it harder to suppress the background.

Five-Point Scale Answers: not at all moderate greatly

Figure 8: Survey results of questions scored on a five-point
agreement scale regarding the split focus condition (FQ = fo-
cus questions). Each question also presents the mean score
(M) and standard deviation (SD). The x-axis presents the
number of participant that voted for each answer respec-
tively.

a number with the correct signal color in the split focus condi-
tion. Here we can see that the subjects recognized the numbers
less often on BG3 (M = 75.42 %, SD = 22.22 %) than on BG4
(M = 83.10 %, SD = 20.09 %). Some participants gave us nega-
tive comments about the field of view of the HoloLens v1 (6 out of
16) and some mentioned that they could not suppress the constant
noise of BG3 (8 out of 16). Lastly, a few participants wished for
more support through the visualizations with a grid, ticks on the
axis, and better overlap handling of the lines (2 out of 16 for each).

4.9 Discussion
Our results reveal that the background affects the task completion
time, while the errors are not affected (H5). Tasks that were solved
on more cluttered backgrounds, like BG3, took longer to solve than
on a background with less clutter. Interestingly, with longer task
completion times the subjects gave less error prone answers. This al-
lows us to assume that harder to suppress backgrounds increase the
duration that users need to find the correct answer. However, the
answers themselves seem not to be influenced by the backgrounds.
The collected subjective questionnaire answers also support that
backgrounds with a higher FC value are perceived as more dis-
tracting and cluttered (H9). Further, in the questionnaire regarding
BG3, some subjects found it hard to read values on the axes (4 out
of 16). However, the answers given for tasks on this background
were slightly better than for BG4 (see absolute errors in Fig. 7(a)).
Following, we think that users are quite capable to overcome the
faced perceptual issues.

As we investigated our second independent variable, the focus
type, we could not find any significance in the measured perfor-
mance (H6). This is especially interesting since we believed that the
increased task load through the split focus (H8) also would decrease
the overall performance (H7). The participants also perceived the
introduced focus type as more demanding. The questionnaire an-
swers (see Fig. 8) show that the participants perceived a higher
task load and increased task completion time. Overall, the split focus
setup successfully increased the awareness of the background for
the participants (FQ5:M = 2.69, SD = 1.35), which was also stated
directly from some of the subjects (3 out of 16). Again, we can
verify that the perceived and measured performance of our subjects
greatly differ. Lastly, the difference of the recognition rate for the
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BG3
BG4

PQ1: The presentation of the visualization in a real environment irritated me.

BG3
BG4

PQ2: The real-world background did not influenced me.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

BG3
BG4

PQ3: I was able to suppress the real-world background.

A Five-Point Scale Answers: agree neutral disagree

BG3
BG4

PQ6: How much did the background affect the perception of the lines?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

BG3
BG4

PQ7: How much did the background affect the perception of the axis labels?

B Five-Point Scale Answers: greatly moderate not at all

Figure 9: Survey results of questions scored on a five-point agreement scale focused on the perceptional questions (PQ =
perception question). The x-axis presents the number of participant that voted for each answer respectively.

split focus condition on both backgrounds can be explained through
the change blindness [26], as the signal color was the same as the
color of the moving water in BG3.

5 OVERALL DISCUSSION & LIMITATIONS
In this section, we will discuss the results of our two studies in
combination. For this, we will first look at the limitations of the
studies and then present an overall discussion.

5.1 Limitations
With our presented user studies, we created a mixture of controlled
lab and in-the-wild studies. Those allowed us to investigate the
influence of real-world backgrounds on the perception of AR visu-
alizations. However, our overall design decisions also introduced
several limitations that we want to discuss.

For our investigation, we deliberately chose only one specific
visualization type, line charts. Other visualization techniques and
even small changes of visual parameters of e.g, bar charts or scatter
plots might produce different results. This could be particularly true
for 3D visualizations. In addition, our chosen visualizations only
show static data. However, dynamic data sets, which are more com-
mon in industrial scenarios, can also change the overall perception
and therefore the outcome of studies. The tasks performed on the
shown visualization were cognitively challenging as shown by our
NASA TLX on mental demand (M = 6.09, SD = 1.73). Tasks which
are less demanding could also change how strong the influence of
the background is perceived.

In our studies, we used the Microsoft HoloLens v1 to present
AR content to the subjects. The usage of a head-mounted display
is more practicable since it frees the hands for interaction but also
comes with drawbacks. Especially the field of view is a limiting
factor on how big visualizations can be and on how much informa-
tion can be perceived at the same time. In our studies, 10 out of 34
participants mentioned the small field of view. The HoloLens was
also perceived as quite uncomfortable (12 out of 34). The subjects
reported pressure (5 out of 34) or pain (5 out of 34) on the nasal
bridge. However, we think that manufacturers, as already seen with
the HoloLens 2, will address those limitations.

Our user studies were placed in a real-world experimental pro-
duction plant that introduced many possible uncontrollable factors
like the temperature, the presence of other people, or noises. Our
findings could slightly differ in an environment with varying influ-
encing factors and background configurations. The backgrounds
we created were use case specific and contained both, static and

dynamic elements. Different backgrounds with more distinct prop-
erties, like color gradients, stronger movement, or additional and
bigger information displays, could change the overall perception.
The Feature Congestion (FC), in combination with other environ-
mental characteristics, was used to create our background con-
figurations. However, the FC value is calculated on static images
and only takes into account three different image properties [46].
Those properties make it difficult to fully represent the complete
background and environment AR applications could be used in.

Our overall setupwas quite restricting. The experiments duration
was rather short and the participants were instructed to sit for the
whole duration. However, in a real scenario, users will move around,
interact with the environment, change their posture, and their
viewing angle. All those factors might change a users’ perception
with regard to the environment and the presented visualizations.

We are aware of the rather small sample size of both studies.
However, our studies already show first important insights on how
the background of a real-world scene could have or have not an in-
fluence on the perception of visualizations. Lastly, the participants
of our studies only reflect a small spectrum of the relevant popu-
lation as visible through the age distribution and the background
the subjects were coming from. This is generally a problem if we
want to analyze how the perception is influenced in an industrial
scenario.

5.2 Discussion
This discussion is split into four different topics that we believe are
the most important outcomes of our research.
The background has only marginal influence on the perception of
visualizations shown in AR. Both our studies reveal that the back-
ground has no influence on the answers given to the presented tasks
(H1 and H5). However, the task completion time was influenced
in Study 2, while it was not affected in Study 1. Overall, partici-
pants were able to ignore the influence of the presented background
configurations. This makes us believe that AR visualizations can
be used in many real-life scenarios without a big effect on users’
performance. This can also be seen by the percentage of how often
subjects recognized the signaled number in the split focus condi-
tion in Study 2, since the higher cluttered background (BG3) had a
lower recognition value in comparison. However, this also shows
that important information placed in such a background should be
more prominent to be recognizable. Additionally, we believe that it
is possible that users compensated for the increased difficulty by
increasing their task completion time, as seen in Study 2. However,
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we cannot see this compensation in Study 1 as well. In comparison,
the task completion time in Study 1 was the fastest on BG3. This,
as well as the rather high error rate in Study 1, could be explained
by the different demographics of our study participants, the over-
all task difficulty (visualizations in Study 2 contained more data
points), or the different visual representation of the visualization
(only white lines in Study 1). Overall, we do not consider it advisable
to prioritize adjustments to the real environment, as the decrease in
performance based on more distracting environments is minimal.
There is more than visual clutter that defines a background and its
influence on the perception. We used the Feature Congestion (FC)
[46] as a guidance while we created background configurations
for our studies. In general, the FC value can create a rather good
definition on how cluttered or distracting a background scene is.
However, it only uses images and therefore loses specific charac-
teristics of a real-world scene (H4 and H9). Such characteristics,
as stated by the participants, can include the overall lighting (11
out of 34), reflections (3 out of 34), movement (8 out of 34), special
areas like the pipes and their attachments (4 out of 34), or the cables
of BG2 (1 out of 34). The perception of those characteristics can
further change, if users have to interact with objects in the back-
ground as well (H8). We think that a purely automatic calculation
of visual clutter and distraction based on images (e.g., Feature Con-
gestion) with regard to real-life environments is not enough, since
specific characteristics of a background are not considered by it.
Possible extensions of the FC algorithm should consider crowding
[52], depth perception [17] of real-world scenes, or the dynamics of
the background [17]. Lastly, also a learned classifier working with
human labeled and rated images could be beneficial as well.
User perceive a visually cluttered background as more distracting
than it actually affects their overall performance. Participants re-
ported that the background (H4 and H9), as well as the secondary
task of Study 2 (H8) have an influence on their performance. The
subjects had the feeling that they took longer and were less pre-
cise in their given answers while working on a background with a
higher FC value. They also felt a higher task load or had a harder
time to read values of the visualizations, like the axes. However, this
perceived influence was not visible in their measured performance
values. We think that in longer working scenarios than simulated
in our experiments, this perception can also have an influence on
the real performance. Additionally, since the perception is coupled
to the user, the overall user satisfaction should also be considered.
This is because a higher satisfaction could compensate for the loss
in performance. Overall, the backgrounds resulted in an increase
of cognitive load, while the answers given were not affected. This
could change with longer working sessions or even over several ses-
sions. Further, the safety of the user and the real-world environment
should be a concern as well, since the subjects in our experiments
were able to suppress the background rather well. This can be espe-
cially dangerous if they ignore warning signs in the background as
simulated with the focus type in Study 2. In summary, we can see a
difference between the measured and perceived performance of the
users. This makes us believe that a greater focus on user experience
could help in the design phase of user interfaces or visualizations
for such AR applications. Lastly, a more user-centric design could
help users to perceive their own work as more correct and produc-
tive.

Various task or visualization parameters could have an influence
on the real and perceived performance. In both studies, we investi-
gated an additional secondary independent variable, the complexity
of the visualization in Study 1 and an additional secondary task
in Study 2. The complexity showed a significant effect on the per-
formance, while the interaction with the background had no such
effect (H2 and H3). The focus type of Study 2 reveals no signif-
icance, either individually or in interaction with the background
(H6 andH7). However, the secondary task increased the awareness
of the background for the users (H8). In general, we believe that
other parameters of visualizations or the presented tasks could have
different effects on the user. The usage of various visual parameters
(e.g, visualizations types, visual marks) or another secondary task,
like changing parameters of a running production machine, could
enhance or decrease the influence of the environment such an AR
application is used in. Lastly, it seems advisable to not prioritize an
adaptation to a rather simple secondary task.

6 CONCLUSION
In this paper, we presented the results of our investigations on
how real-world environments can influence the perception of vi-
sualizations in Augmented Reality (AR), based on different back-
ground configurations created in an experimental production plant.
In addition, we also investigated the complexity of visualizations
and the introduction of a secondary parallel task in combination
with the created background scenes. Both studies showed that the
background has only a marginal influence on the measured task
performance, while the perceived performance was affected by the
real-world backgrounds. We discussed the results of the studies, as
well as their limitations and provided insights and recommenda-
tions.

With this research project, we hope to contribute to a general
understanding of the way how visualizations in AR are perceived.
We think that further research work on perceptual issues can also
yield important and interesting insights. Possible research direc-
tions could be the user experience on different visualizations types,
visual variables, or user characteristics (e.g., age, visualization exper-
tise). Overall, we hope that our work can be used to make informed
design and development decisions and to bring AR a step closer to
becoming a productive tool in real-life working scenarios.
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