
On-Tube Attribute Visualization for Multivariate Trajectory Data

Benjamin Russig, David Groß, Raimund Dachselt, Stefan Gumhold

Fig. 1. Examples of multivariate on-tube visualizations. (a) Vehicles: steering angle is mapped to color (cf. color scale); Triangles show
velocity mapped to length and acceleration mapped to color and inversely to base width (wide and purple depict braking actions); thin
yellow Rectangles are used to show the throttle amount. (b) Delivery Drones: using color to visualize velocity (yellow= faster); Line
plot shows power usage; Circles used as labels to identify drones. (c,d) Fisch Wehr: overview and detail visualizations of streamlines.
Color shows velocity (red= faster); a Line plot is used to visualize high pressure areas; Sign glyph shows angular velocity (shape and
color). Ambient occlusion emphasizes the vortex structure in (c).

Abstract— Stylized tubes are an established visualization primitive for line data as encountered in many scientific fields, ranging from
characteristic lines in flow fields, fiber tracks reconstructed from diffusion tensor imaging, to trajectories of moving objects as they arise
from cyber-physical systems in many engineering disciplines. Typical challenges include large data set sizes demanding for efficient
rendering techniques as well as a large number of attributes that cannot be mapped simultaneously to the basic visual attributes
provided by a tube-based visualization. In this work, we tackle both challenges with a new on-tube visualization approach. We improve
recent work on high-quality GPU ray casting of Hermite spline tubes supporting ambient occlusion and extend it by a new layered
procedural texturing technique. In the proposed framework, a large number of data set attributes can be mapped simultaneously to a
variety of glyphs and plots that are embedded in texture space and organized in layers. Efficient rendering with minimal data transfer is
achieved by generating the glyphs procedurally and drawing them in a deferred shading pass. We integrated these techniques in a
prototype visualization tool that facilitates flexible mapping of data set attributes to visual tube and glyph attributes. We studied our
approach on a variety of example data from different fields and found it to provide a highly adaptable and extensible toolbox to quickly
craft tailor-made tube-based trajectory visualizations.

Index Terms—Visualization, Rendering, Line Data, Trajectories, Multivariate Data.

1 INTRODUCTION

Modern tracking and sensor technology facilitates the collection of large
amounts of movement data to capture the ever increasing complexity
of systems with non-stationary entities. Acquiring such trajectory data
is common in a number of different fields. Typical data sources include
the movement of land [1, 24], air [2, 3] and water vehicles [25], migra-
tory animals [44] or entities in scientific simulations [35]. The path of
an object is recorded over time as a sequence of (geo-)spatial positions
that form a two- or three-dimensional trajectory.

Stylized tubes have become the de-facto standard for visualizing this
kind of data as demonstrated by a large body of research applying them
for this purpose, but they are inherently limited in their capacity to show
more than spatial aspects of the data. However, trajectories are often
enriched with additional data originating from sensor measurements,
manual annotations or contextual cues, or data simply derived from
other attributes. Examples include physical properties such as velocity,
acceleration and orientation, internal states like battery status and en-
gine load, or semantic data like object type and events. In general, a
multitude of additional internal or external attributes specific to certain
research fields are possible. As the amount of dense multivariate trajec-

• Benjamin Russig, David Groß and Stefan Gumhold are with the Chair of
Computer Graphics and Visualization, TU Dresden. E-mail:
benjamin.russig|david.gross1|stefan.gumhold@tu-dresden.de

• Raimund Dachselt is with the Interactive Media Lab, TU Dresden. E-mail:
raimund.dachselt@tu-dresden.de

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

tory data increases, data analysts and domain experts employ diverse
visualization techniques that help them understand the complexity of
the data and gain insights into underlying structures. For analysis tasks
like finding anomalies or inspecting trends and correlations with the
spatial data, it is essential to visualize a subset of the available attributes
simultaneously with the spatial behavior of trajectories.

This work extends the idea of using color as a visual attribute by
mapping additional data attributes to various representations rendered
on the tube surface, including glyphs for discrete samples along the
tube and various continuous mappings like heatmaps and plots. We will
refer to this concept as On-Tube Visualization throughout this paper.
We believe this concept to be extremely powerful in a wide range of
scientific fields where trajectories and other line data are commonly
studied. Consequently, we must be able to deal with the diverse and
sometimes conflicting requirements they pose. Advanced multivariate
visualization capabilities need to be integrated without compromising
the spatial intuition provided by existing tube-based visualizations. We
especially do not want to sacrifice recent advancements in terms of
visual fidelity that enable improved spatial perception.

In this work, we present a domain-agnostic toolbox that offers the
flexibility to quickly create use-case driven multivariate trajectory vi-
sualizations for both small and large scale data sets, and we lay the
technical foundations necessary to achieve this. We provide a smart
view-dependent parameterization approach to minimize distortion of
glyphs and to maximize their visibility at the same time. Light-weight
data management on the GPU and procedural generation of glyphs
ensures high performance and enhances the flexibility of the system.

High quality textures are achieved by generating them on-the-fly
in the shading stage. For this, glyph rendering is based on the evalua-
tion of signed distance functions, opening up the use of a near-infinite

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3209400

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

range of shapes to render glyphs and plots from, while at the same
time enabling effects such as pre-filter anti-aliasing and outlines. We
limit the performance impact of this procedural approach by employ-
ing a deferred shading pipeline, which also enables other advanced
per-fragment effects like ambient occlusion to be performed efficiently.
Geometry anti-aliasing for deferred shading is supported via standard
temporal- and screen-space methods. The geometry pass of the pipeline
can be switched to an image-order ray caster that utilizes hardware ray
tracing cores, further extending the scalability to massive data sets.
To summarize, our main contributions are:

• A powerful approach to building use-case driven, high quality tube-
based visualizations of multivariate line data sets:
– Efficient: a large number of attributes can be visualized directly in

their spatial context, reducing the need for additional views.
– Flexible: layers and procedural glyphs allow for quick adaptation

to use cases.
– Extensible: any glyph or plot that can be expressed in terms of a

signed distance function could be incorporated.

• A high-performance spline tube rendering architecture:
– efficient anti-aliased deferred shading pipeline for spline tubes

with ambient occlusion, either using a highly optimized rasteri-
zation strategy or hardware RT cores to cast rays, enabling best
possible performance for small and large data sets alike

– requires few pre-computations, all of which are fast (ambient
occlusion density field, parameterization, glyph placement, con-
struction of acceleration structure when using hardware RT cores)

We also provide an interactive prototype that demonstrates both the
flexibility and realtime performance of the methods we present. We
used this prototype in the validation of our approach with various
data sets and found that already few procedural glyphs and plots in
combination with the layer concept provide the power to easily create
expressive visualizations for many different contexts. Examples of
such visualizations can be seen in Fig. 1. The large configuration space
combined with the interactive speeds of all involved calculations make
us confident that both visualization researchers and domain experts will
benefit from this approach.

2 RELATED WORK

2.1 Multivariate Data Visualization
Ware defines data as a set of entities, their attributes and relations [43],
with the number of attributes possessed by an entity determining its
complexity. Entities with a complexity higher than two are referred to
as multivariate data. Finding suitable visual mappings for the given
attributes to allow for good perception of value and relations is the
main concern of visualizing such data. Different authors have inves-
tigated visual properties and their mappings to attributes of varying
types. The works from Cleveland and McGill [5] and Mackinlay [27]
provide the groundwork for the usage of graphical primitives in visual
representations of data. Beyond design guidelines, they rank the effec-
tiveness of visual properties in perceptual tasks based on the type of
data (quantitative, ordinal, or nominal).

For the visualization of multivariate data, several surveys and
overview works have been conducted [18, 26, 45, 47]. These reviews
provide valuable summaries and categorizations of the various exist-
ing techniques and state of the art. Early works like the one by Wing
and Chang [45] have focused on the various aspects of visual encod-
ings. Ward [42] presents an overview of glyphs that are especially
well-suited to represent multivariate data. The author defines glyphs as
graphical objects or symbols that represent data entities and map their
attributes to graphical properties. Later surveys aim to provide general
summaries of the possibilities of high-dimensional data visualization
as a whole. Liu et al. [26] provide a coherent overview including
classifications of methods for data transformation, visual mapping and
view transformation. Methods for feature classification, fusion visual-
ization and correlation analysis specific to spatial data are presented
by He et al. [18]. Additional to the more general surveys, Zhou and

Weiskopf [47] review methods for the visualization of multivariate
particle data sets. They also evaluate the usage of general multivari-
ate visualization methods like scatter plots and parallel coordinates in
that context. Staib et al. [35] employ so-called flow ribbons, which
combine animation with abstract views of the data while preserving
relation to the spatial domain. For general time-dependent data in mul-
tidimensional state spaces, Grottel et al. [11] adapt well-known tools
for multivariate visualization and propose continuous-time scatter plot
matrices and parallel coordinates plots. Since these do not visualize
time information directly, they further introduce temporal heat maps
and combine these modalities into coordinated views. We adapt their
temporal heat map as color bands on the tube surface.

2.2 3D Trajectory Visualization
A multitude of methods to visualize trajectory data have been proposed,
a detailed review of which is given in a recent survey by He et al. [17].
The spatial extent of three-dimensional trajectories is typically con-
veyed using lines, tubes, ribbons or consecutive arrangements of primi-
tives, as presented by Buschmann et al. [4]. Their hardware accelerated
attribute mapping enables changes to the visualization parameters in
real-time. Data attributes are mapped directly to visual properties of
the geometric representations, and texture mapping is used to display
additional attributes by varying pattern density, stretch or animation
speed. In a follow-up work, they applied this approach to visualize ani-
mated air-traffic data [3], where arrows depict the movement direction
of aircraft. Tominski et al. [37] propose using stacked trajectory bands
to visualize space, time and attribute values simultaneously. They use
color mapping to depict attribute values and integrate time through the
ordering of bands. For vector fields, Stoll et al. [36] also utilize color,
tube radius and texture mapping to visualize streamline attributes. Both
approaches indicate the general direction of movement using arrow
textures. Contrary to that, Vrotsou et al. [39] indicate the direction of
paragliding trajectories using tapered segments. Further, they propose
simplification methods for the visualized trajectories. One drawback of
this approach is that it does not allow for texture mapping in a coherent
manner, thus one has to rely only on color mapping.

For trajectories attributed with orientation values, ribbons are a
suitable choice of representation. Ware et al. [44] use such ribbons
to visualize the underwater movement of humpback whales. Texture
mapping on the flat sides of the ribbon conveys the swimming direction
with a 2D chevron pattern. To visualize the angular velocities, they use
3D sawtooth glyphs that are placed onto the ribbons. More involved use
of texture mapping for encoding spatial properties of the trajectories
is possible as well, as shown by Ritter et al. [32]. Here, the density
of procedurally generated circle or stroke patterns is varied to indicate
relative distances between trajectories or to the viewer.

Common to all these techniques is a strong focus on the spatial
aspects of the data, with usually one or two additional characteristic
attributes included for context. On the other hand, methods dedicated
to multivariate data visualization have limited capability to provide
intuitive spatial insights, especially on larger scales. We see a strong
opportunity for improvement here by combining techniques from both
fields in an economic manner.

2.3 Tube Rendering
Various methods have been proposed to generate tube-like geometry
from discrete polyline representations of trajectories. In the standard
approach, a fully tessellated tubular mesh is generated around a given
trajectory. Cross-section vertex rings located around the sample points
are connected to form a generalized cylinder, as described by Ueng et
al. [38] and Zhang et al. [46], implying a swept-disc type tube volume
which – depending on the use case – requires special care for points
with extreme inflection or G1-discontinuous segment connections. With
shading, realistic results are produced that allow for good depth percep-
tion and, with appropriate parameterization, easy texturing.

As the amount of geometry quickly becomes a bottleneck for large
data sets, other approaches use imposters that give the impression of
tubes when combined with a lighting approximation [8,23,28,30,34,36].
Perhaps most relevant to us from this family of methods is work done by

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3209400

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Everts et al. [9]. They present stylized wide lines with depth dependent
halos and depth cueing, and later extend this work to allow the mapping
of various texture patterns modulated by data attributes [10].

Simple impostors without depth information might fall short of deliv-
ering realistic results at geometry intersections. As an alternative, direct
ray casting of tubes can be used. Reshetov and Luebke [31] proposed
a fast iterative algorithm for computing the approximate intersection
of a ray with a tube following a polynomial curve. Their algorithm
is fast and delivers high-quality results using a swept-disc type tube
model. Han et al. [16] introduced a piece-wise linear tube primitive
defined as a union of spheres interconnected by tangential cones, and
provide a method for efficiently composing this union within a raytrac-
ing framework. Being effectively swept-sphere, their model naturally
handles junctions and corners. Groß and Gumhold [12] proposed a
rasterization-based pipeline for GPU ray casting of a similar piece-wise
linear tube primitive with support for correct transparency and ambient
occlusion. They achieve high geometry throughput by using screen-
space proxy quadrilaterals for casting rays, while the fast GPU visibility
sorting necessary for transparency increases fill-rate utilization. Rus-
sig et al. [33] proposed a swept-sphere Hermite spline tube primitive
that can be efficiently ray casted, enabling smooth, continuous tubes
similar to [31]. They also propose a rasterization-based pipeline, but
use oriented bounding boxes as proxy geometry, negatively affecting
geometry throughput.

Recently, it has been shown that image-order ray casting has a clear
scalability advantage over rasterization. Kanzler et al. [20] proposed a
voxel-based ray-marching pipeline suitable for GPUs that can easily
cope with extremely large data sets, although their piece-wise linear
tube model cannot generally represent data sets exactly due to the in-
herent discretization, and is thus best suited for overview visualizations.
Kern at al. [22] compared the efficiency of several image-order ray
casting and rasterization-based tube rendering strategies in the context
of transparency. Notably, they confirmed that utilizing the hardware
ray tracing (RT) cores available in the latest generation of GPUs offers
superior performance at scale, especially when only the primary rays
are required. Specifically in the context of tubes, Wald et al. [40] have
shown that utilization of hardware RT cores can be optimized even
further by exploiting the GPU ray transformation facilities that are used
for supporting hierarchies of acceleration data structures to essentially
enable free oriented bounding box rejection tests, greatly benefiting
user-defined line/curve primitives.

3 ON-TUBE VISUALIZATION

To our knowledge, there are currently no methods described in the
literature that allow for a significant number of additional scalar at-
tributes to be visualized for multi-variate trajectories without assuming
restrictions on their spatial complexity or using additional linked views.
On-tube visualization tackles this challenge by making use of the space
offered by the tube primitives to display additional visualizations. In
this section, we will elaborate on this concept.

3.1 Design Goals
Our main objective is to enable interactive visualization of as many
additional scalar variables as possible from highly multivariate 3D
trajectories (also called traces) directly in their spatial context. The
defining feature of trajectories over more general line data is their pa-
rameterization in terms of time. While we explicitly target trajectories,
the method should be general enough to be applicable to all kinds of
line data from many scientific fields, including those that typically
deal with very large data set sizes. For this, rendering performance
is as important as aiding structural perception, which are potentially
conflicting goals.

The additional attributes visualized alongside the spatial behavior of
a trace should mainly provide better context, but ideally they should
also help analysts identify interesting developments in the data that
would otherwise remain hidden when inspecting a purely spatial view.
Nevertheless, we do target analysis tasks for which spatial aspects are
of prime importance, so the added elements must not cause clutter or
introduce occlusion issues. Finally, we do not aim for the ability to get

Layer 1 Layer 2 Layer 3

Reference grid final on-tube visualization

Compositing

Fig. 2. Schematic view of on-tube visualization including the optional
procedural reference grid texture. This example includes: (1) a Line plot
in the bottom layer. (2) Triangle glyphs placed as densely as possible at
the original sample locations of the mapped attributes. For contrasting
the white areas of the color map with the white background, a thick outline
is applied. (3) equidistantly spaced Star glyphs sampling additional five
data attributes. Compositing is performed by alpha blending the layers in
the order of their definition on top of the reference grid.

exact readings of quantities from the visualization (we feel this is best
served by on-demand linked detail views, the integration of which we
deem out of scope in this work). They should instead help revealing
local trends and anomalies, correlations or divergences between spatial
and non-spatial behavior, as well as relative quality. In this work, we
develop the technical framework needed to craft such visualizations.

3.2 Design Rationale
Tube primitive. The choice of line primitive forms the main dimen-
sion of the design space for any 3D trajectory visualization. We con-
sider the use of tubes a premise because of the widespread familiarity
many domain experts have with them. We do believe their popularity is
warranted though, as they are a direct and intuitive representation of
the volume a moving object has covered along its path, and in some
fields even directly correspond to the physical object they represent
(e.g. blood vessels or nerve fiber tracts). While ribbon-like primitives
trivially support correct texturing, they either favor certain viewing
directions or require non-trivial view-alignment that can still break
down in areas where trajectory and viewing direction become parallel.
Nevertheless, we strive in this work to adapt the desirable properties of
ribbon parameterization to tube texturing. The curved surface of a tube
does pose a challenge when using it as a canvas for visualization, but we
feel confident that the surface parameterization we present in Sect. 4.3
sufficiently mitigates the inherent distortions to make the design goals
laid out in the previous section achievable.

The particular choice of tube primitive is limited by the need for a
continuous canvas to draw on. The piecewise linear cone-sphere com-
bination prevalent in line data visualizations is problematic here, since
it inherently introduces singularities to cylinder-like parameterizations,
as the spheres connecting two segments correspond to single points on
the axis. On the other hand, recent work has shown that ray casting of
tubes extruded from parametric curves can be implemented fast enough
for real-time applications, so they are a viable choice [31, 33]. As
a curve representation, Hermite splines in particular lend themselves
well, as velocity vectors are a common trace attribute, which in turn
opens up possibilities of major data-guided reduction for the purpose
of rendering (which we did not look at in this work).

Glyph and plot-based visualization. Trace data is usually dis-
cretized. Attributes are being sampled at finite time or space intervals,
and often the rate at which they are being sampled varies. Additionally,
some data types such as events are meaningless to interpolate. Glyphs
are an adequate tool for such data as they can be placed exactly at the
point on the trajectory where the sample was taken. However, care
must be taken in the case of on-tube visualization. While the usual
considerations discussed in the literature regarding perception of geo-
metric features like size, area or angles apply, the issues they pose are
exacerbated by the curved tube surface. Additional limitations apply
to the use of orientation: Directions other than forward or backward
become somewhat disconnected from the space they are embedded in.
Smooth view-alignment of the visualization around the tube inherently
requires that there be no preferred reference direction, thus relative

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3209400

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Fig. 3. Example configurations of the more complex glyph types and con-
tinuous mappings we implemented. 1st row: Sign glyph with diverging
color (see color scale), showing the full value range from -1 to 1. 2nd
row: Line plot with nearest, linear and cubic attribute interpolation. 3rd
row: five configurations of a 5-axis Star glyph showing the colorization
capabilities. 4th row: Temporal heat map, again with the three interpo-
lation modes, showing values from 0 to 1. All interpolation takes place
before mapping. Color maps used in 1st and 4th from [6] (berlin, imola).

directions like ”left” or ”right”, ”up” or ”down” in texture space do not
necessarily agree with the corresponding directions in the original 3D
reference frame of the traced object.

The selection of glyphs we implemented in our prototype takes these
considerations into account. In addition, we implemented continuous
mappings as an alternative for scalar attributes that are very densely
sampled or which are safe to interpolate. Table 1 lists the glyphs and
plots we have implemented so far. Our selection is in no way exhaustive
and we do not claim an optimal choice at this point. Rather, we regard
it as part of a proof-of-concept effort for demonstrating the feasibility
and usefulness of on-tube visualization. As we will show in Sect. 4.4,
the framework allows for easy integration of new glyph and plot types.

Layers. We propose to stack glyphs and plots in layers as a way to
organize the visualization and group together related attributes or those
that are especially well-suited for a certain visualization type. Further-
more, they provide a clear way of defining a z-order for compositing,
for which we currently employ simple alpha blending. However, they
also provide a clear singular extension point for adding more advanced
compositing techniques later on (e.g. into other channels like surface
normal or reflectance properties of physically based lighting models).

Layers also serve to configure the glyph or plot they are set to draw.
Table 2 lists the general options we currently support.

Reference grid. To counter both perspective distortions when em-
bedding visualizations in 3D space as well as enabling comparison of
glyph proportions over longer distances, we added the option of a refer-
ence grid. Since the color channel can easily become overloaded when
superimposing several layers, the grid can be purely normal-mapped, or
use a tunable combination of color and normal-mapping. Fig. 2 gives a
schematic overview of the on-tube visualization concept.

3.3 Renderer Design
We opted to include both object-order and image-order ray casting using
the OpenGL rasterization pipeline and the NVIDIA OptiX hardware
ray tracing API [29], respectively. While ray tracing will scale better
for massive data sets, rasterization still has a performance advantage for
a relevant range of small to medium data set sizes in our experiments.
Thus, we argue that it is an important option to have, even when
hardware support for ray tracing is present.

1In general, only one attribute per glyph can be sampled at its original
location. The remaining ones will be interpolated.

Circle 1 generic quantity (radius) or marking of sample posi-
tions for other layers.

Rectangle 2 generic quantities (width, height) or constant-size
tick marks.

Triangle indicate movement direction and visualize 2 related
quantities (width, height) like speed and acceleration.

Sign 1 quantity that oscillates around zero (directly supports
negative values), changes shape smoothly from ’−’-
like to ’+’-like (see Fig. 3)

Star simple implementation of star coordinates [19] for
multiple comparable scalar attributes (see Fig. 3).

Line plot
[35]

maps up to n quantities to thickness of n lines (we
currently support n = 1..4), ideal for densely sampled
comparable scalar attributes (see Fig. 3).

Temporal
heat map

[11]

maps up to 4 quantities to tube color. Useful even for a
single attribute as it bypasses the limited sampling rate
(at the spline nodes) of the tube color visual attribute
(see Fig. 3).

Table 1. Glyph and continuous mapping types implemented for this paper
and their recommended usage. Each glyph also supports color mapping
in addition to its explicitly mentioned visual attributes.

sampling original1, uniform time, equidistant
interpolation type nearest, linear, cubic

outline on/off, thickness
color fixed or color-mapped

attribute 1..n fixed value or data source, windowing params

Table 2. Configurable options per layer. We made two exceptions: neither
Line plots nor the Star glyph can use a color scale.

For rasterization, we build upon the Hermite spline tube pipeline by
Russig et al. [33] and improve it with established GPU ray casting
optimizations to further increase render performance. Regardless of the
choice of render method, we expect their swept-sphere tube model to
be more robust with real-life trajectory data due to the natural support
for G1 discontinuities and tolerance to areas of extreme inflection that
sweeping a sphere offers, but we also include the highly efficient inter-
section routine by Reshetov and Luebke [31] when swept-disc tubes
are unproblematic and rendering speed is deemed most important.

Since the shading operations required to realize on-tube visualiza-
tion can become quite complex depending on the number of layers and
glyph types used, we must take care that no unnecessary work is done
on fragments that are later discarded. This is not an issue for image-
order ray casting, but cannot be avoided in rasterization unless the work
is deferred to a separate shading pass. Since deferred shading prevents
use of multi-sampling by the GPU, we use Temporal Anti-Aliasing
(TAA, [21]) as a standard approach.

Finally, we opted against using two completely separated renderers.
OptiX allows for near-seamless integration into the OpenGL-based ren-
derer, which in turn greatly simplifies the overall software architecture
by reducing duplicate code. Furthermore, we do not see a clear benefit
from simulating global illumination effects other than ambient occlu-
sion, which can be adequately implemented in rasterization. While
on-tube visualization targets closer distances, AO is strongly required
to aid spatial perception at overview scales (see Fig. 1 (c)). Future work
may investigate combining on-tube-visualizations with transparency,
which might warrant a purely ray tracing-based renderer.

4 CONCEPT AND IMPLEMENTATION

This section details the technical aspects of our approach. We start
with an overview of the rendering process and then discuss the most
important components in detail.

4.1 Overview
Our pipeline, as illustrated in Fig. 4, has two render paths, enabling
the use of both rasterization and ray tracing hardware to perform ray

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3209400

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

casting (the latter we will refer to as the RT path for short). The
rasterization path shares all pre-processing steps with the RT path,
while the latter additionally requires building an acceleration bounding
volume hierarchy (BVH), which is implemented within the OptiX API.

First, loaded data is converted to an internal representation. We
assume spatial trajectories sampled over time with tangent vectors that
are automatically estimated with finite differences if not contained in
the input data. Tube radius is kept constant to avoid scaling of glyphs.2
Each trajectory is organized into nodes storing position plus tangent,
and Hermite segments indexing their start and end node. An arbitrary
number of additional data series is supported. Their sampling is not
constrained to the position nodes but can have an independent, often
denser and also varying sampling rate. When the RT path is utilized,
we need to provide axis-aligned bounding boxes for each segment to
the ray tracing API, which we compute from the node data according to
the chosen radius (see Sect. 4.2). The rasterization path consumes the
node data without further pre-processing in the form of line lists; the
necessary proxy geometry (illustrated in Fig. 5 (a)) is generated on-the-
fly. Once all geometry is uploaded to the GPU, the scene is voxelized
into a density volume, which is later used to apply ambient occlusion
(AO) using a technique similar to [7]. We implemented this process as
a highly parallel GPU algorithm to allow for fast re-computation when
loading a new data set.

Glyphs are sampled at discrete time values and are specified in a local
2D coordinate system over the range [−1,1]2. To map the glyphs onto
the tube surface, we locate the glyph center based on its time value and
our (u,v) surface parameterization. The parameterization is described
in Sect. 4.3, and the process of creating and placing glyphs is detailed
in Sect. 4.4. Once the parameterization is calculated on the CPU, it
is transferred into a GPU-side buffer for access by the shading stage.
Glyph data and information about which glyphs overlap a segment are
also uploaded to the GPU in two buffers that need updating after every
change in the mapping configuration.

With all pre-processing completed, rendering is started via the cho-
sen render path. Rasterization and RT paths share a common output
interface and are thus exchangeable modules for the geometry stage
in our deferred shading architecture. The per-pixel attributes surface
color (as emitted from the tube primitive), hit position, hit normal,
spline tangent, segment index and texture coordinates (calculated with
the help of the parameterization within each render path) are stored in
a G-Buffer. The shading pass determines the final unlit color for each
pixel by drawing up to four glyph layers as well as the optional and
potentially normal-mapped reference grid on top of the surface color.
Glyph drawing happens by evaluating their signed distance function
(see Sect. 4.4). Shading is finalized with local lighting, with the AO
term being evaluated globally using the previously computed density
volume. The resulting image is then anti-aliased using standard TAA.

4.2 Ray Casting

In the following, we will describe important implementation details for
each render path.

Rasterization path. As is typical for object-order GPU ray casting,
the primitives are approximated by proxy geometry that, in the best case,
tightly encloses the silhouette of the original shape. The complexity
of this proxy geometry greatly impacts the efficiency of the method,
and herein lies the main optimization opportunity compared to [33].
It is important to note that unlike for the RT path, splitting curves
into smaller segments has a direct negative impact on GPU geometry
load, so emitting as little proxy geometry as possible is key to make
rasterization scale well with data set size.

Following the original approach, the geometry shader is responsible
to generate proxy geometry for the quadratic sub-segments within a
Hermite segment. Our major optimization is to compute the extents of
a view-aligned oriented bounding box instead of one that is fitted in
object-space. This enables using the front-facing side (which will cover

2We initially set the tube radius to 1/4 of the average distance between
position samples and make this factor user-adjustable.

Compute Shader

Preprocessing CPU

Attribute Data
Arc Length

Parameterization

Glyph Placement per configuration

Primitive Sorting

per data set /

geometry change

per view

Geometry Pass

Vertex Shader

Geometry Shader

Billboard

Fragment Shader

Ray Intersection

Full Screen Shading Pass

Fragment Shader

Evaluate Glyphs

Ambient Occlusion + Shading

per frame

per data set

Density Volume

Attribute Buffers

Rasterizer

G-Buffer

Temporal Anti-Aliasing Pass

OptiX Build BVH

OptiX

Ray Gen Prog.

BVH Traversal

Closest Hit Prog.

Intersection Prog.

Hit

Apply Parameterization

OpenGL Interop.

Voxelization

Index Data

Node Data

Fig. 4. Schematic illustration of the data flow and two-pass rendering
process with its alternative render paths using either highly optimized
rasterization or hardware-accelerated ray tracing.

the whole tube) as a view-aligned quadrilateral, reducing the number
of emitted triangle strip vertices from 14 to 4.

Let b1,b2,b3 be the control points of a sub-segment positional Bézier
curve, cb their centroid and d̂b ∝ b3− b1 their main normalized di-
rection. The orthonormal basis vectors of a view-aligned coordinate
system can then be defined as (·̂ ∝ denoting normalization):

ẑ ∝ cb− e , ŷ ∝ ~db× ẑ and x̂ ∝ ẑ× ŷ, (1)

where e is the eye position. Using these basis vectors, we construct a
3×3 rotation matrix R= [x̂, ŷ, ẑ]. The control points are then transformed
into the local coordinate system by moving the centroid to the origin
and applying the inverse rotation:

b′1,2,3 = RT · (b1,2,3− cb). (2)

Calculating the bounding box extents can then be performed on b′1,2,3
following the procedure detailed in [33], however, only the face normal
to the local ẑ direction needs to be emitted.

The modified proxy geometry still lies completely in front of the
actual primitive geometry. Thus, the conservative depth extension of
the rasterization pipeline can be used to reclaim the early-z test. To
capitalize on this, primitives are drawn front-to-back by sorting them
in visibility order. Sorting is performed whenever the view changes
a certain amount using a GPU-based compute shader implementation
of a fast parallel radix sort [14]. We found that 36 degrees of orbital
movement around the camera focus are a reasonable threshold for
triggering a re-sort. To enable TAA with rasterization, we apply sub-
pixel jitter to the projection matrix each frame using a 2D Halton
pattern [15, 21].

RT path. Thanks to OpenGL interoperability, OptiX enables accel-
erated image-order ray casting to be used as a drop-in replacement
for the rasterization path in our pipeline. However, it requires axis-
aligned bounding boxes to be provided when custom primitives are
used. We can use the same procedure as outlined above, but we use the
world-coordinate system as the target reference frame instead.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3209400

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

(a)

(−1,0)

(0, −1)

(0,1)

(1,0)

(0,1)

(1,0)

(0, −1)

(−1,0)

(b)
Fig. 5. (a) Object-order ray casting. A ray through a fragment of the
silhouette quad intersects the tube in xhit , which corresponds to spline
point xs on tube center line. Normalized direction vectors are surface
normal n̂hit , spline tangent t̂s and screen up direction ûs. (b) Glyph
mapping. Glyphs are specified over the domain [−1,1]2 and mapped to
a tube surface location based on our parameterization.

Ray casting results are transferred into the G-Buffer using fast GPU-
internal memory transfers. To enable TAA, we choose jittered sub-pixel
locations for casting rays using the same pattern as with rasterization.

4.3 Spline Tube Parameterization
For tube surface parameterization, our goals are to minimize distortion
and to maximize glyph visibility from an arbitrary viewing direction.
There are three major sources of distortion: tube parameterization,
tube curvature, and perspective projection. To minimize impact of
parameterization, we re-parameterize according to trajectory arc length.
The orthogonal direction around the tube could also employ circular arc
length as shown in Fig. 6 on the right side, but tube curvature results
in a distortion that increases towards the silhouette. We compensate
for this with the screen aligned parameterization shown on the left of
Fig. 6. Glyph visibility can be maximized by aligning the v-origin on
the surface with the center of arcs corresponding to fixed u parameter
values as illustrated by the dark brown dotted line in Fig. 7 (a).
v coordinate. The center of Fig. 6 illustrates the computation of v
on an orthogonal cut through the tube, where the tube tangent points
towards the reader. Imagine that the eye is located to the left along the
x-axis. We can compute the screen-aligned normalized up direction ûs
(see also Fig. 5) according to

ûs ∝ t̂s× (xs− e). (3)

From the screen aligned up direction, v computes to

v = 〈n̂hit , ûs〉 . (4)

v can be easily computed in the fragment shader.
u coordinate. To compute the u coordinate from the tube parameter
thit at a hit point, we need fast access to an arc length parameterization
s j(t) for each tube segment j, which we assume to be parameterized
over t ∈ [0,1]. We follow the same strategy as proposed by Walter
and Fournier [41]. They observed that the arc length parameterization
can be accurately approximated by optionally splitting the domain
into two parts and representing each part of the parameterization by
a cubic polynomial computed by a fit to four equidistant samples ti
of a precise numeric approximation of s(ti). They propose to split
the domain at potential inflection points. Here, we take a more GPU-
friendly approach that avoids conditional execution by splitting the
domain equidistantly into four spans g j,k=0...3 as illustrated in Fig. 7
(b). To compute the polynomials g j,k(l) in Bernstein basis,

g j,k(l)= (1− l)3 ·b j,k
1 +3l(1− l)2 ·b j,k

2 +3l2(1− l) ·b j,k
3 + l3 ·b j,k

4 (5)

each parameterized over l ∈ [0,1], we first evaluate si = s(t = i/12) for
i = 0 . . .12 using 10-point Gauss-Legendre quadrature. From this the
Bernstein coefficients compute to

b j,k
1 = s3k +σ j, b j,k

4 = s3k+3 +σ j (6)

b j,k
2 = 1/6(18s3k+1−9s3k+2 +2)+σ j (7)

b j,k
3 = 1/6(−9s3k+1 +18s3k+2−5)+σ j. (8)

𝑣 = 1
3
4 1

2
1
4

0

𝑣 = −1

3
4
1
2

−3
4

1
4

0
−1
4

−1
2

−3
4

−1
2

−1
4

ො𝑢𝑠

𝑥𝑠

𝑥ℎ𝑖𝑡

ො𝑛ℎ𝑖𝑡

𝑒

Fig. 6. Illustration of the two strategies to parameterize tube surface
around center curve. Left: equidistant in screen space; right: arc length
parameterization.

where σ j is the sum over all segments before segment j. Finally, u is
computed from

u = g j,b4tc(4(t mod 1/4)
)
/R, (9)

where we divide by tube radius R to ensure that the on-tube glyph
coordinate systems illustrated in Fig. 5 (b) are uniformly scaled. We
upload the coefficients b j,k

1...4 in one 4x4 matrix per segment to the GPU.

Additional Considerations. Even though we do not expect this to
negatively impact the effectiveness of on-tube visualizations, we note
that Hermite splines are only C1 continuous at segment transitions,
causing the continuity of surface normal and v parameterization to
reduce to C0. This can lead to noticeable kinks in v-parameter iso lines
and mapped glyphs.

The parameterization currently ignores the end caps at the begin-
ning and end of a trajectory, which can cause artefacts like in Fig. 9,
where the yellow Star glyph axis is mapped to the complete end cap
hemisphere due to the u singularity there. The end caps of swept-disc
tubes will instead take on a single color as their planar nature causes a
singularity in v. We leave the resolution of both effects to future work.

4.4 Attribute Visualization

As in most visualization tools, we define a windowing function for each
mapped attribute based on the value range in the data and an output
range defaulting to [0,1]. The user can adjust both ranges and if desired,
reverse the output range for a windowing function with negative slope.

Glyph placement. Each layer supports a different glyph type. As
each glyph combines several attributes that can be sampled differently,
we support nearest, linear and cubic interpolation for re-sampling be-
fore mapping to visual attributes. While we support placing glyphs
equidistant in time or trajectory arc length, we argue for a variable
spacing that maximizes space utilization and reduces the need for inter-
polation, as illustrated in Fig. 8 for a moderately complex setup.

The basic idea is to instantiate glyphs per layer in a single pass
through each trajectory such that no two glyphs overlap on the tube,
iterating over all unique timestamps of all attributes (A1,A2,A3 in
Fig. 8) mapped in the current layer. By default, glyphs are placed
in a greedy manner: The first glyph is placed at the earliest possible
timestamp, and subsequent glyphs are placed at the next timestamp
among all involved attributes where no overlap in u-extent with the
previous glyph occurs. For equidistant spacing, the glyph locations
are simply chosen independently of attribute sample locations. Even
without parallelization over trajectories, this O(n) algorithm executes in
less than 1/3 of a second for all but our two largest test cases, where our
benchmark configuration (see Sect. 6) causes a noticeable one-time lag
of 0.8 and 2 seconds respectively. This would pose a minor annoyance
for very large datasets, but an optimized parallel GPU-implementation
could drastically reduce execution time.

Regardless of the chosen placement strategy, the result of the place-
ment algorithm is a) an array of glyph information per layer consisting
of glyph center uctr and extent [umin,umax] as well as the vector of in-
volved data attribute values with interpolation and windowing applied,
and b) annotations for every segment storing a range of indices into a)
that mark which glyphs overlap with it. Both arrays are provided in
GPU-side buffers for shading.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3209400

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

(a)
0 0.50.5 11

5

(b)

Fig. 7. (a) Parameterization. Behavior of the parameterization for
some Hermite tube segment j, defined by the tube axis/position curve
p j(t) (central dashed line) connecting nodes N1,N2. The dotted line
going through the point xhit marks where v = 0. It bisects all cross-
section disk arcs on the tube surface into 2 arcs of equal length (a
and b for the disk around xs). v runs from −1 to 1 between the op-
posing tube silhouette lines. Note that the screen-space direction of
v depends on the screen-space direction of the curve tangent at that
point. (b) Arc length approximation. Plot of s j(t) vs. precise mea-
surements of the arc length of some Hermite segment j. The graph is
colored according to the polygonal spans g j,k being used in each range
of t. The Hermite control point matrix of the curve used for this example
is K j =

[
(−1.5,0,−1)T (−1.5,0,12)T (−16,0,21)T (2,0,1)T]

Parameters u and v are computed as described in Sect. 4.3 for every
ray intersection and are provided to the fragment shader in the G-
Buffer (see Sect. 4.1). The shader can now check umin < u < umax on
the two closest glyphs associated with the segment to find which, if
any, is covering the fragment. The closest glyphs are in turn found
on-the-fly via binary search. In case a glyph is found, glyph-local
coordinates τ = (u− uctr,v) are computed and passed on to glyph
instance evaluation, which provides color and opacity of the glyph at
the fragment. Continuous mappings are handled slightly differently:

Here, ”glyphs” represent control points and have zero width. Thus,
the algorithm generates an attribute vector at all unique timestamps.
For shading, either two or four adjacent attribute vectors are collected
depending on the requested interpolation scheme.

Procedural glyphs and plots. Fig. 3 shows the two discrete glyphs
(Sign and Star) as well as two continuous mappings (Line and Heat
map) illustrating the different interpolation strategies. Continuous
mappings are evaluated in (u,v) coordinates in the same way as if
drawn in a 2D visualization.

The discrete glyphs are procedurally constructed without genera-
tion of any geometry data. Most glyphs are based on evaluation and
combination of signed distance functions (SDFs) together with a color
selection strategy. SDFs provide algebraic distance from the glyph
outline and indicate whether the sampling point is inside through their
sign. Drawing of outlines is also straight-forward by selecting the glyph
color inside and the outline color around the zero values (see Fig. 8).
For glyph internal antialiasing of color edges we exploit the fwidth
and the smoothstep functions of GLSL. In the following, we detail
the evaluation of the Sign and Star glyphs, since they exemplify the
power and flexibility that SDFs award to the framework.

Let f−(τ), f◦(τ) and f+(τ) be SDFs describing a rectangular shaped
minus symbol, a circular shape zero symbol and a cross shaped plus
symbol. Simple linear interpolation with parameter α ∈ [−1,1] allows
mapping of a signed attribute:

Sa(τ) =

{
−a f−(τ) + (a+1) f◦(τ), if a≤ 0

(1−a) f◦(τ) + a f+(τ) otherwise
(10)

Perceptual scaling can be added by a simple re-parameterization of α ,
which we leave for investigation in future work.

The Star glyph is an example of a complex cascade of union op-
erations on lines and optionally, a polygon filling the area enclosed

by the star coordinates. The union can simply be implemented by a
minimum over the SDFs of the composing shapes. We additionally use
the distance to the line primitives for selecting different colors per axis
and for the interior, as well as for defining a blending area within which
these colors should smoothly blend into each other. When rasterization
is used, deferred shading effectively limits the performance penalties
such complex constructs incur, as the measurements in Sect. 6 confirm.

Reference grid. To help judging relative sizes and distances, we im-
plemented a procedural 2-level reference grid. The spacing of the grid
lines are user-configurable, but by default they are chosen such that
they create square-looking cells, with a multiple of 4 minor ticks for
every major tick. For normal mapping, we implemented two relief mod-
els. The simpler of the two creates V-shaped troughs, the other attains
smooth-looking results via sine-wave shaped normal perturbation at the
cost of a small but measurable performance impact (see Sect. 6). The
configurations in Fig. 10 (c and f) show an example of the grid being
employed in an on-tube visualization.

4.5 Prototype Tool
To test our approach, we created a prototype implementation capable of
loading data sets from various formats. The tool was implemented as a
plugin to the CGV-Framework [13] using the OpenGL API, following
the flow detailed in Sect. 4.1. We also already leverage the framework’s
plugin architecture to enable quick extension with newly supported
data formats, and it could be leveraged to enable extension with new
glyph and plot types as well.

Fig. 9 shows a screenshot of the tool interface. Data sets are loaded
using the graphical user interface (GUI) or simply via drag & drop,
which triggers arc length re-parameterization and voxelization. The
GUI is further used to manage glyph and plot layers. To support the
large amount of possible visual mapping combinations, the implemen-
tation programmatically generates and compiles the fragment shader
on demand, which is fast and only necessary when changing layers
or glyph types. Glyph placement is also done whenever these actions
occur. Value changes like adjusting color maps or mapping parameters
are interactive and directly reflected in real-time on the visualization.

5 CASE STUDIES

Multivariate trajectory data emerges from a variety of applications. The
tool just presented has the potential to create rich and diverse on-tube
visualizations for such data. In the following, we examine three use
cases, including land and air vehicles and a flow simulation, covering
a wide area of possible applications of our approach. The example
configurations presented are intended to show the flexibility of the tool;
we do not yet claim optimality for the data sets at hand.

Car Movement Data. Computerization has transformed the way man-
ufacturers control the state of modern motor vehicles. Nowadays,
combustion engines need precise controlling to meet the strict emission
regulations imposed by governments. Ongoing digitalization enables
the read-out of sensor data and internal state in the form of on-board
diagnostics (OBD). The NOx Emissions (NOx = Nitrogen Oxides) data
set is a recording of OBD data, originating from a 100 km long test
drive through cities, rural areas and over highways. Fig. 10 (a, b and c)

A3→color -5.1 3.5 5.5-2.5 1.6

Layout

A2→height 80 16071 170139121108

A1→width 2.0 1.32.7 2.3 1.7 1.4 1.0

5.32.7

Fig. 8. Glyph placement at original samples: the first sample among
mapped attributes A1, A2 and A3 that corresponds to a point on the
trajectory where the glyph would fit decides the location of the glyph.
The remaining attributes are interpolated (indicated by the grey arrows)
before computing the value for the visual attribute.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3209400

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Fig. 9. Our tool in action, showing the benchmark glyph configuration
on Hot Room (left side is without and right side with AO). To the right is
the UI, showing glyph setups for the color and Star layer. Custom color
maps can be added directly in the tool using the editor at the bottom.
The widget to the left shows the preset color maps, mostly from [6].

show different glyph configurations applied to this data set. The small
box in (b) shows an overview of the whole route.

In (a), we studied the relations between throttle (white Rectangle
height), fuel flow and emissions (blue and red Line plots). Tube color
shows velocity, with yellow being faster. Fuel flow usually increases
after throttle is applied, which is to be expected, producing a subsequent
rise of emissions. However, the bottom row shows significantly more
exhaust gases produced for a similar amount of throttle and fuel used.
Since the speed is similar, we guess this results from higher engine
speed in a lower gear – unfortunately these attributes were not included.
Depending on traffic, the driver or automatic transmission could have
chosen a higher gear in the bottom scenario to reduce emissions.

Another mapping was applied in Fig. 10 (b and c), again showing
emissions but this time using both available sensors. A Star is used
to allow quick shape-based perception of correlations between throttle
amount (red), fuel flow (blue) and emission (grey). The Temporal
heat map displays the NOx aftertreatment state (black means active)
as a single attribute. Movement direction is depicted by small white
Triangles. Color helps to quickly find interesting areas in (b), where a
close inspection can be performed. It seems that the fuel flow and sub-
sequently the emissions are delayed, probably because throttle response
is not instantaneous. Still, emissions rise with the amount of burned
fuel, albeit sometimes with a discrepancy between the two sensors.
However, we have also seen areas with longer time spans of throttle
applied and no significant fuel flow or NOx gases produced. Overall, af-
tertreatment happens more often than expected – especially in contrast
to the regeneration of the particulate filter – and is usually performed
in small intervals, sometimes with very short time in between.

Fig. 10 (d) shows Vehicles, which is another data set of vehicle
movement data (see also Fig. 1 (a)). Here we employed the Temporal
heat map to simultaneously show engine rpm, throttle amount and
brake action. It is interesting to see that the driver did not break when
entering the sharp turn, probably because the car was already driving
slow but also there must have been no immediate oncoming traffic on
the entered lane. Throttle abruptly stops when preparing a gear change,
while engine rpm stayed high until the shift action was executed, as
illustrated by the color-coded Circle glyphs. Given that the car just
entered a road after a sharp turn, this might not be the best time to
interrupt acceleration (cf. the white arrow at the same spot in Fig. 1 (a)).
The sharp white Triangles show the indicator usage, which is visualized
using a Star glyph, using its ”left” and ”right” axes (relative to the tube
direction). While this is not a typical use case for a Star glyph, it once
more shows the flexibility of our tool and the provided glyph types.

Drone Movement Data. The Delivery Drones data set compares var-
ious speed settings for parcel drones flying along a test trajectory
(payload is equal for all drones). An example visualization is shown in
Fig. 1 (b), using tube color to map velocity (yellow is faster). A Line
plot shows the used current of the battery. We did not aim at a deeper
analysis of the data nor did we find special features, yet this example
illustrates the use of the Circle glyph as a marker for identification.
Further it shows the importance of the outline to visually separate the
individual mappings which improves perception.

Fig. 10. Various examples of layer configurations supported by our tool.
(a, b and c) are from NOx Emissions. (d) shows the Vehicles data set.
(e and f) are views on the turbulent region of Fisch Wehr.

Fluid Simulation Data. The Fisch Wehr data set is a collection of
streamlines originating from an etho-hydraulics (comparative behavior
research in hydraulics) simulation of a fish friendly wier combined with
a turbine generator. The goal is to enable safe up and down passage of
small fish over a 1 meter height difference. This requires low velocities
and minimal turbulence in the outflow regions of the lower turbine part.
Fig. 1 (c) shows an overview of the whole swirl structure with color
coded velocities. White depicts slow velocities, while red shows fast
moving currents (3 m/s). The outer part of the swirl is rather slow and
can be deemed safe for passage. The turbine outflow shows turbulent
areas, which are shown up-close in Fig. 10 (e, f) (blue arrows loosely
depict the outflow walls). A grey Line plot maps the pressure, while
the Sign glyph visualizes angular velocity. The outflow region has
fluctuating and, as is expected, overall high velocities combined with
frequent changes in angular momentum. Note especially (f), where a
vortex is formed with strong angular velocities to the left. Based on the
visualization we judge that fish may be able to easily swim through the
upper part of the structure, yet have trouble migrating upwards when
entering the difficult outflow passage.

6 PERFORMANCE ANALYSIS

Performance tests are being conducted to evaluate the real-time ca-
pabilities of our approach to render potentially large amounts of seg-
ments with complex glyph mappings. The test system was equipped
with an Intel Core i9-9900K with 8×3.6 GHz, 64 GB RAM and an
NVIDIA GeForce RTX 2080 Ti with 11 GB of VRAM. To evaluate
both overview and close inspection scenarios, we use a far and near
view configuration – far showing the whole data set in the viewport and
near close up views. Average frame times were recorded for a 5 s long
full camera rotation around the data set using a Full HD (1920×1080)
viewport. Local illumination was enabled for all measurements.

We first compare the base performance of the different rendering
methods without any visualization mappings. To evaluate our im-
provements to the rasterization path, a comparison to the previous
method [33] using their intersection routine and original OBB proxy
without sorting was conducted. Two of the data sets used in the original
work were included for reference: HotRoom (convection streamlines)
and Furball (synthetic). To test scalability, we additionally included
two larger synthetic data sets 2 Mil and 5 Mil which are structurally
very similar to Furball. The results are shown in Fig. 11. Following the
re-triggering strategy, our rasterization path performed sorting a total of
10 times for the full camera rotation. Single sorting times per data set

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3209400

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

1,
3 1,

9

1,
3

3,
0

6,
2 7,

6

13
,1

25
,0

1,
3

2,
1

1,
3

4,
2 5,

6 7,
3

11
,9

34
,8

2,
6

33
,1

2,
6

10
,8

5,
2

4,
0 4,
5 5,

9

2,
7

7,
5

3,
7

6,
2

5,
9

4,
8 5,
3 6,

9

2,
7

11
,1

2,
6

7,
8 11

,1

5,
8 6,
4 8,

1

2,
8

6,
2

3,
1

9,
7 13

,3

8,
2 9,
5 13

,5

1,
3

3,
5

1,
3

9,
9

20
,1

16
,5 27

,5

55
,4

1,
3

3,
5

1,
3

9,
7

21
,9

19
,2 31

,2

10
4,

3

1

10

100

Vehicles
(78)

Delivery Drone
(5155)

NOx Emissions
(6689)

Hot Room
(30948)

Fisch Wehr
(342373)

Furball
(790803)

2 Mil
(1815523)

5 Mil
(4718592)

ms previous (far) ours (far) OptiX Reshetov (far) OptiX Russig (far)
previous (near) ours (near) OptiX Reshetov (near) OptiX Russig (near)

Fig. 11. Average render times (in milliseconds) of the eight evaluated data sets for far and near views using a logarithmic scale. Segment counts are
given in parentheses. Numbers for previous state times with early-z culling enabled, while the transparent area depicts frame times without.

5,
4 5,
96,
6

6,
0

10
,7

6,
2

13
,9

6,
3

0

3

6

9

12

15

forward deferred
Fisch Wehr

ms base
base + AO
glyphs + AO
glyphs + grid + AO

0

1

2

3

4

5

6

A B C D E F G H

ms sorting time
A - Vehicles
B - Delivery Drone
C - NOx Emissions
D - Hot Room
E - Fisch Wehr
F - Furball
G - 2 Mil
H - 5 Mil

Fig. 12. Left: Comparing the influence of AO, glyph and grid mapping on
the frame times for Fisch Wehr (averaged over both view configurations).
A complex configuration of 4 glyph layers was used with a color- and
normal-mapped grid. Right: Sort timings in milliseconds.

are plotted in Fig. 12 (right). Our rasterization method tends towards a
3× times speedup over the previous method for sufficiently large data
sets, even with conservative depth enabled for both. This can be mainly
attributed to reduced geometry load due to the simplified billboard,
improving performance especially in zoomed out views of large data
sets. Differences between far and near views are far less pronounced
and only become noticeable for the 5 Mil data set. We believe this to
be the result of the optimized draw order due to visibility sorting in
conjunction with early-z culling, which helps reducing the impact of
fill rate limitations. Additionally, more consistent frame times over all
view directions are achieved.

The OptiX render path shows mostly consistent scaling across all
data set sizes. However, for smaller data sets up to Hot Room, our
rasterization path performs consistently better, with Delivery Drone
and Hot Room being a particularly challenging scenario for the former.
We believe this is caused by a suboptimal BVH layout due to many
small overlapping segments. The Reshetov intersection routine is up
to twice as fast as the one by Russig, but shows severely degraded
performance in some data sets, which we hypothesize contain adversely
shaped segments negatively affecting its convergence. The advantage
of rasterization on up-to medium-sized data sets can likely be attributed
to overhead caused by BVH traversal. Fisch Wehr marks the break-
even-point, where our rasterization and hardware ray tracing (Reshetov)
achieve almost equal render times. For even larger data sets, the inher-
ent scalability advantage of ray tracing becomes the dominant factor.
In general, we believe our rasterization approach to be well-suited to
lower-end hardware without RT support.

With the performance baseline determined, the influence of our
shading operations was measured to validate the choice of a deferred
pipeline. The results are shown in Fig. 12 (left) for Fisch Wehr; other
data sets showed comparable behavior. For the glyph mappings, a
complex configuration consisting of 4 layers with Temporal heat map,
Line plot, Triangle and 5-axis Star glyph was chosen for a total of 8
mapped attributes (cf. Fig. 9). A color- and normal-mapped grid was
used. Deferred shading shows superior scaling with each additional
effect enabled, causing only a slight increase by 12% on average for
our test viewport size. We conclude from this that early-z culling
cannot fully prevent overdraw, causing forward rendering performance
to degrade with each additional effect, resulting in up to 120% increased
frame times with all effects enabled.

Temporal anti-aliasing is applied after the shading pass and takes

around 0.9 ms to evaluate for our viewport configuration.

7 DISCUSSION AND OUTLOOK

The prototype tool shows that the flexibility of our approach enables
quick adaptation to multivariate data from diverse fields. In this work
it was not our intention to create optimal visualizations for given data
and tasks, but to lay the foundations that allow visualization experts in
collaboration with domain experts to create effective, tailored on-tube
visualizations. For future work, our tool facilitates the rigorous evalua-
tion of such specific solutions. The performance measurements show
that our method is applicable to large data sets comprising millions
of segments, and that glyphs and plots do not introduce performance
issues. This makes us confident that more computationally involved
and/or specialized on-tube visualizations can be realized in the future.

A few issues remain unresolved, however. On-tube visualization
in its current form breaks down for trajectories that contain longer
stationary periods. Land vehicle trajectories are especially prone to
this, and the Vehicles and NOx Emissions data sets contain several such
instances. For the future, we propose superimposing these parts with a
billboard showing a view-aligned time series plot of the evolution of
mapped attributes within the affected period.

While our parameterization mitigates visibility and length distor-
tion problems associated with texturing a 3D tube for visualization,
perceptual issues related to perspective distortions remain unsolved.
Here, orthographically projecting glyphs onto the tube in screen space
could be a viable alternative in some situations. Additionally, the kinks
in the parameterization that can appear at C2 discontinuities between
segments could be eliminated by blending tangents of neighboring
segments within a small blending zone when calculating v.

Finally, we observed that it is still possible to quickly overload
visualizations with too many attributes even in just four layers. Utilizing
surface features other than color (e.g. normals similar to the reference
grid, or physically based material properties) has the potential to push
the boundaries a little further, which may warrant an extensive user
study verifying the perceptual limits of the layer-based approach.

8 CONCLUSION

We proposed On-Tube Visualization, a flexible and extensible ap-
proach to tube-based multivariate trajectory visualization. We con-
tributed a technical framework realizing this approach based on a
high-performance spline tube rendering architecture. We were able to
validate the approach by creating useful visualizations for diverse data
sets, thereby demonstrating the powerful solution space. Performance
measurements confirm that the technical foundation provides a sound
basis to apply and further develop the approach in the future, where we
hope it will help visualization- and domain experts to fully realize the
potential of rich and expressive multivariate trajectory visualizations.

ACKNOWLEDGMENTS

This work received funding from the Deutsche Forschungsgemeinschaft
through DFG grant 389792660 as part of TRR 248, the Clusters of
Excellence CeTI (EXC2050/1 grant 390696704) and PoL (EXC2068
grant 390729961), and from the German Federal Ministry of Education
and Research via the Center for Scalable Data Analytics and Artificial
Intelligence (ScaDS.AI) Dresden/Leipzig (BMBF, 01/S18026A-F).

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3209400

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

REFERENCES

[1] S. Al-Dohuki, Y. Wu, F. Kamw, J. Yang, X. Li, Y. Zhao, X. Ye, W. Chen,
C. Ma, and F. Wang. Semantictraj: A new approach to interacting with
massive taxi trajectories. IEEE Transactions on Visualization and Com-
puter Graphics, 23(1):11–20, 2017. doi: 10.1109/TVCG.2016.2598416

[2] N. Andrienko, G. Andrienko, J. M. C. Garcia, and D. Scarlatti. Analysis
of flight variability: a systematic approach. IEEE Transactions on Visual-
ization and Computer Graphics, 25(1):54–64, 2019. doi: 10.1109/TVCG.
2018.2864811

[3] S. Buschmann, M. Trapp, and J. Döllner. Animated visualization of spa-
tial–temporal trajectory data for air-traffic analysis. The Visual Computer,
32:371–381, Mar. 2016. doi: 10.1007/s00371-015-1185-9

[4] S. Buschmann, M. Trapp, P. Lühne, and J. Döllner. Hardware-accelerated
attribute mapping for interactive visualization of complex 3d trajectories.
In 2014 International Conference on Information Visualization Theory
and Applications (IVAPP), pp. 356–363, 2014.

[5] W. S. Cleveland and R. McGill. Graphical perception: Theory, experimen-
tation, and application to the development of graphical methods. Journal
of the American Statistical Association, 79(387):531–554, 1984.

[6] F. Crameri. Scientific colour maps (7.0.1). Zenodo, Sept. 2021. doi: 10.
5281/zenodo.5501399

[7] C. Crassin, F. Neyret, M. Sainz, S. Green, and E. Eisemann. Interactive
indirect illumination using voxel cone tracing: A preview. In Proc. Symp.
Interactive 3D Graph. and Games, p. 207. Association for Computing
Machinery, New York, NY, USA, 2011. doi: 10.1145/1944745.1944787

[8] J. Dı́az-Garcı́a and P. P. Vázquez. Fast illustrative visualization of fiber
tracts. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
7431 LNCS, pp. 698–707. Springer, Berlin, Heidelberg, 2012. doi: 10.
1007/978-3-642-33179-4 66

[9] M. H. Everts, H. Bekker, J. B. T. M. Roerdink, and T. Isenberg. Depth-
dependent halos: Illustrative rendering of dense line data. IEEE Trans-
actions on Visualization and Computer Graphics, 15(6):1299–1306,
Nov./Dec. 2009. doi: 10.1109/TVCG.2009.138

[10] M. H. Everts, H. Bekker, J. B. T. M. Roerdink, and T. Isenberg. Interactive
illustrative line styles and line style transfer functions for flow visualization.
CoRR, abs/1503.05787, Mar. 2015.

[11] S. Grottel, J. Heinrich, D. Weiskopf, and S. Gumhold. Visual analysis of
trajectories in multi-dimensional state spaces. Computer Graphics Forum,
33(6):310–321, 2014. doi: 10.1111/cgf.12352

[12] D. Groß and S. Gumhold. Advanced rendering of line data with ambient
occlusion and transparency. IEEE Transactions on Visualization and
Computer Graphics, 27(2):614–624, 2021. doi: 10.1109/TVCG.2020.
3028954

[13] S. Gumhold. The computer graphics and visualization framework. https:
//github.com/sgumhold/cgv. Accessed: 25-March-2022.

[14] L. K. Ha, J. H. Krüger, and C. T. Silva. Fast four-way parallel radix sorting
on GPUs. Comput. Graph. Forum, 28(8):2368–2378, Dec. 2009. doi: 10.
1111/j.1467-8659.2009.01542.x

[15] J. H. Halton. Algorithm 247: Radical-inverse quasi-random point se-
quence. Commun. ACM, 7(12):701–702, dec 1964. doi: 10.1145/355588.
365104

[16] M. Han, I. Wald, W. Usher, Q. Wu, F. Wang, V. Pascucci, C. D. Hansen,
and C. R. Johnson. Ray tracing generalized tube primitives: Method and
applications. Computer Graphics Forum, 38(3):467–478, jul 2019. doi:
10.1111/cgf.13703

[17] J. He, H. Chen, Y. Chen, X. Tang, and Y. Zou. Diverse visualization
techniques and methods of moving-object-trajectory data: A review. ISPRS
International Journal of Geo-Information, 8(2):63, Jan. 2019. doi: 10.
3390/ijgi8020063

[18] X. He, Y. Tao, Q. Wang, and H. Lin. Multivariate spatial data visualization:
A survey. Journal of Visualization, 22:897–912, Oct. 2019. doi: 10.1007/
s12650-019-00584-3

[19] E. Kandogan. Star coordinates: A multi-dimensional visualization tech-
nique with uniform treatment of dimensions. In Proceedings of the IEEE
information visualization symposium, vol. 650, p. 22. Citeseer, 2000.

[20] M. Kanzler, M. Rautenhaus, and R. Westermann. A voxel-based rendering
pipeline for large 3D line sets. IEEE Transactions on Visualization and
Computer Graphics, 25(7):2378–2391, July 2019. doi: 10.1109/TVCG.
2018.2834372

[21] B. Karis. High quality temporal anti-aliasing. Advances in Real-Time
Rendering for Games, SIGGRAPH Courses, 2014.

[22] M. Kern, C. Neuhauser, T. Maack, M. Han, W. Usher, and R. Wester-
mann. A comparison of rendering techniques for 3d line sets with trans-
parency. IEEE Transactions on Visualization and Computer Graphics,
27(8):3361–3376, aug 2021. doi: 10.1109/TVCG.2020.2975795

[23] A. Kuhn, N. Lindow, T. Günther, A. Wiebel, H. Theisel, and H.-C. Hege.
Trajectory density projection for vector field visualization. In M. Hlaw-
itschka and T. Weinkauf, eds., Proc. EuroVis - Short Papers. The Eu-
rographics Association, 2013. doi: 10.2312/PE.EuroVisShort.EuroVis-
Short2013.031-035

[24] C. Liu, K. Qin, and C. Kang. Exploring time-dependent traffic congestion
patterns from taxi trajectory data. In 2015 2nd IEEE International Con-
ference on Spatial Data Mining and Geographical Knowledge Services
(ICSDM), pp. 39–44, 2015. doi: 10.1109/ICSDM.2015.7298022

[25] H. Liu, X. Chen, Y. Wang, B. Zhang, Y. Chen, Y. Zhao, and F. Zhou.
Visualization and visual analysis of vessel trajectory data: A survey. Visual
Informatics, 5(4):1–10, 2021. doi: 10.1016/j.visinf.2021.10.002

[26] S. Liu, D. Maljovec, B. Wang, P.-T. Bremer, and V. Pascucci. Visualizing
high-dimensional data: Advances in the past decade. IEEE Transactions
on Visualization and Computer Graphics, 23(3):1249–1268, 2017. doi: 10
.1109/TVCG.2016.2640960

[27] J. Mackinlay. Automating the design of graphical presentations of rela-
tional information. ACM Trans. Graph., 5(2):110–141, Apr. 1986. doi: 10.
1145/22949.22950

[28] D. Merhof, M. Sonntag, F. Enders, C. Nimsky, P. Hastreiter, and G. Greiner.
Hybrid visualization for white matter tracts using triangle strips and point
sprites. IEEE Transactions on Visualization and Computer Graphics,
12(5):1181–1188, 2006. doi: 10.1109/TVCG.2006.151

[29] NVIDIA. Optix™ ray tracing engine. https://developer.nvidia.
com/rtx/ray-tracing/optix, 2009. Accessed: 2022-06-30.

[30] V. Petrovic, J. Fallon, and F. Kuester. Visualizing whole-brain dti tractog-
raphy with gpu-based tuboids and lod management. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1488–1495, 2007. doi: 10
.1109/TVCG.2007.70532

[31] A. Reshetov and D. Luebke. Phantom ray-hair intersector. Proc. ACM
Comput. Graph. Interact. Tech., 1(2), aug 2018. doi: 10.1145/3233307

[32] F. Ritter, C. Hansen, V. Dicken, O. Konrad, B. Preim, and H.-o. Peit-
gen. Real-time illustration of vascular structures. IEEE Transactions
on Visualization and Computer Graphics, 12(5):877–884, 2006. doi: 10.
1109/TVCG.2006.172

[33] B. Russig, M. Salm, and S. Gumhold. GPU-based raycasting of hermite
spline tubes. In 2020 IEEE Visualization Conference (VIS), pp. 26–30,
2020. doi: 10.1109/VIS47514.2020.00012

[34] M. Schirski, T. Kuhlen, M. Hopp, P. Adomeit, S. Pischinger, and
C. Bischof. Efficient visualization of large amounts of particle trajectories
in virtual environments using virtual tubelets. In Proc. ACM SIGGRAPH
Int. Conf. VRCAI, pp. 141–147. Association for Computing Machinery,
New York, NY, USA, 2004. doi: 10.1145/1044588.1044615

[35] J. Staib, S. Grottel, and S. Gumhold. Temporal focus+context for clusters
in particle data. VMV ’17, p. 85–93. Eurographics Association, Goslar,
DEU, 2017. doi: 10.2312/vmv.20171263

[36] C. Stoll, S. Gumhold, and H.-P. Seidel. Visualization with stylized line
primitives. In Proc. IEEE Visualization, pp. 695–702, 2005. doi: 10.
1109/VISUAL.2005.1532859

[37] C. Tominski, H. Schumann, G. Andrienko, and N. Andrienko. Stacking-
based visualization of trajectory attribute data. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2565–2574, 2012. doi: 10.
1109/TVCG.2012.265

[38] S.-K. Ueng, C. Sikorski, and K.-L. Ma. Efficient streamline, streamribbon,
and streamtube constructions on unstructured grids. IEEE Transactions
on Visualization and Computer Graphics, 2(2):100–110, 1996. doi: 10.
1109/2945.506222

[39] K. Vrotsou, H. Janetzko, C. Navarra, G. Fuchs, D. Spretke, F. Mansmann,
N. Andrienko, and G. Andrienko. Simplifly: A methodology for sim-
plification and thematic enhancement of trajectories. IEEE Transactions
on Visualization and Computer Graphics, 21(1):107–121, 2015. doi: 10.
1109/TVCG.2014.2337333

[40] I. Wald, N. Morrical, S. Zellmann, L. Ma, W. Usher, T. Huang, and
V. Pascucci. Using hardware ray transforms to accelerate ray/primitive
intersections for long, thin primitive types. Proc. ACM Comput. Graph.
Interact. Tech., 3(2), aug 2020. doi: 10.1145/3406179

[41] M. Walter and A. Fournier. Approximate arc length parametrization. In
Proceedings of the 9th Brazilian Symposium on Computer Graphics and
Image Processing, pp. 143–150. Caxambu, Minas Gerais, Brazil, 29 Oct.–

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3209400

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://github.com/sgumhold/cgv
https://github.com/sgumhold/cgv
https://developer.nvidia.com/rtx/ray-tracing/optix
https://developer.nvidia.com/rtx/ray-tracing/optix

1 Nov. 1996.
[42] M. O. Ward. Multivariate data glyphs: Principles and practice. In Hand-

book of Data Visualization, chap. II.7, pp. 179–198. Springer Berlin Hei-
delberg, Dec. 2008. doi: 10.1007/978-3-540-33037-0 8

[43] C. Ware. Information Visualization: Perception for Design. Elsevier Inc.,
3 ed., 2012. doi: 10.1016/C2009-0-62432-6

[44] C. Ware, R. Arsenault, M. Plumlee, and D. Wiley. Visualizing the un-
derwater behavior of humpback whales. IEEE Computer Graphics and
Applications, 26(4):14–18, 2006. doi: 10.1109/MCG.2006.93

[45] W. Wing and Y. Chan. A survey on multivariate data visualization. pp.
1–29, Jan. 2006.

[46] S. Zhang, C. Demiralp, and D. Laidlaw. Visualizing diffusion tensor
mr images using streamtubes and streamsurfaces. IEEE Transactions
on Visualization and Computer Graphics, 9(4):454–462, 2003. doi: 10.
1109/TVCG.2003.1260740

[47] L. Zhou and D. Weiskopf. Multivariate visualization of particle data. The
European Physical Journal Special Topics, 227:1741–1755, Mar. 2019.
doi: 10.1140/epjst/e2019-800158-6

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3209400

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

	Introduction
	Related Work
	Multivariate Data Visualization
	3D Trajectory Visualization
	Tube Rendering

	On-Tube Visualization
	Design Goals
	Design Rationale
	Renderer Design

	Concept and Implementation
	Overview
	Ray Casting
	Spline Tube Parameterization
	Attribute Visualization
	Prototype Tool

	Case Studies
	Performance Analysis
	Discussion and Outlook
	Conclusion

