

NATIONAL CENTER FOR TUMOR DISEASES PARTNER SITE DRESDEN UNIVERSITY CANCER CENTER UCC

Fast High-Resolution Disparity Estimation for Laparoscopic Surgery

Jan Müller, Reuben Docea, Matthias Hardner, Katja Krug, Paul Riedel, Ronald Tetzlaff Technische Universität Dresden / National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany

> **Intraoperative Image Guidance System** Laparoscopic Liver Surgery

Laparoscopic Surgery (schematical) [1]

Intraoperative endoscope image

Preoperative data (CT/MRT scar

of liver, with vasculature/tumour)

Advantages

- minimally invasive
- lesser morbidity
- faster patient recovery

Problems rrelation image MRT/CT data location of vasculature/tumours

motion/alterations of organs

→ Image Guidance System

ARAILIS project: Augmented Reality and Artificial Intelligence supported Laparoscopic Imagery in Surgery

ARAILIS IGS processing chain

• Point Cloud generation/fusion requires *dense accurate* disparity estimation • endoscope's *full framerate* at *FullHD resolution* necessary for smooth rendering

sparity Estimation: Hierarchical Stereo Matching (HSM) neural network [2]

Acceleration Methods

- **NVIDIA TensorRT: Optimise Network Inference [3]**
- GPU/CUDA-centric acceleration/optimisation
- layer/tensor fusion
- memory footprint minimisation
- mixed-precision data (FP32, FP16, INT8)

Implementations

- **ROS (Robot Operating System) Integration** • ROS/python callback function GPU **HSM** inference • interface, inference, output Post-proc Pre-proc disparity stereo ima **TensorRT & DALI** data transfer • build runtime engine once GPU DALI TensorRT

runtime engine

NVIDIA DALI: Network Pre-Processing

- pipelined input processing on GPU:
- image transposition, conversion, normalisation, padding/cropping
- streaming data transfer

Multithreading/Multi-GPU

- time synchronisation of stereo images → pairs
- tagging of stereo pairs
- \rightarrow *distribution* to threads / GPUs

• integration in ROS infrastructure CPU • DALI pipeline: DMA interface

GPU-centric implementation

- post-processing on GPU
- minimum data transfer: direct operation on results

Multithreading

- syncing of images by time stamps
- thread tagging/renaming
- ROS scripts: assign threads to GPUs

Experimental Results

Engine

Quality: Disparity Error

Models

- **REF** original HSM algorithm, PyTorch, 32-bit float (FP32) data FullHD resolution (1920×1080 px)
- **DS** original HSM algorithm (see REF), downscaled 1/16 of FullHD (480×270 px)
- **32** TensorRT engine & DALI pipeline, FP32 data only FullHD
- **16** TensorRT & DALI, mixed-precision FP16 & FP32 data FullHD
- 816 TensorRT & DALI, mixed-precision INT8 & FP16 & FP32 FullHD
- TensorRT & DALI, mixed-precision INT8 & FP32 FullHD

Data Recording

- endoscope: EinsteinVision, frame rate 30 frames / s (fps), depth-of-field **DOF** [20 mm, 200 mm] → DOF disparity range [48.5, 485] px
- data set: 926 stereo images (31 s), with disparity range [3.24, 560] px

	Mean Relative Disparity Error			Maximum Relative Disparity Error		
Error Measures			工 _〒	10° ITT	т	- <u> </u>
• disparity error to REE		西西	뛷宁		Ē	

Speed: Throughput

Setup

- workstation **XB**: CPU 2 × Xeon 4216, GPU 4 × RTX A5000
- measurement: average data volume (frames) per time (s)
- models, data set \rightarrow see Quality, more workstations \rightarrow see paper

Implementation model	Throughput / fps	
Original serial execution REF (single CPU/GPU)	2.9	downscaled for "acceptable"
Downscaled serial model DS (single CPU/GPU)	14.9	throughput
TensorRT & DALI (single GPU) Models 32 / 16 / 816	8.3 / 21.5 / 27.3	significant acceleration more threads no advantage
Multi-threaded / TRT & DALI (2 threads / 1 GPU)	- / 20.2 / 27.0	
Multi-threaded / parallelised (2 threads / 2 GPU)	- / 42.9 / 51.0	
		full frame rate (> 30 fps)

Multi-threaded / parallelised (3 threads / 3 GPU) - / 64.9 / 60.2 Multi-threaded / parallelised (4 threads / 4 GPU) - / 74.1 / 90.1 throughput of model 8 very similar to model 816

Distributed Processing

• frame grabber, stereo rectification on "front-end" workstation

• syncing/disparity estimation on "back-end" workstation **ERAPH**?

Recent & Current Work

Summary & Conclusions

- integration in processing chain of ARAILIS Image Guidance System
- latest measurement: model **16** on *single* GPU RTX 3090 Ti \rightarrow 35 fps
- integration of Point Cloud calculation: on *single* RTX 3090 Ti \rightarrow 32 fps
- reference measurements (on body phantom)

- improvement/acceleration of dense FullHD disparity algorithm
- model **16**: very good quality, full frame rate on 2 GPUs
- \rightarrow more accurate 3D reconstruction & registrations
- \rightarrow improved usability

Acknowledgement

The authors gratefully acknowledge funding for this research by the State of Saxony via Sächsische Aufbaubank (SAB) in the scope of the ARAILIS project (100400076). This measure is co-financed with tax funds on the basis of the budget passed by the Saxon state parliament.

References

- [1] Image: Hörstmann & Todoroff www.chirurgie-mallorca.com
- [2] YANG, Gengshan, et al. Hierarchical deep stereo matching on high-resolution images. Proc. CVPR, 2019. pp. 5515-5524
- [3] NVIDIA, "NVIDIA TensorRT documentation," https://docs.nvidia.com/deeplearning/tensorrt/, online, accessed 2022-06-01