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Abstract—An intraoperative Image Guidance System (IGS),
facilitating the localisation of pathological tissue or vasculature,
could greatly support medical decisions during minimally inva-
sive interventions. In our IGS for laparoscopic surgery, the 3D
reconstruction of abdominal organs requires fast and accurate
depth information from stereo images. To this end, we employ
a state-of-the-art algorithm for dense disparity estimation. To
cope with low processing performance, previous solutions used
only downscaled images, and hence produced disparities of low
quality. In this work, we present methods and implementations
which improve and accelerate disparity estimation such that it
runs with FullHD resolution images at full camera framerate.

Index Terms—Image guided surgery, machine vision, stereo
disparity, neural network, parallelisation, multithreading

I. INTRODUCTION

In recent years, abdominal surgery has moved increasingly
from open surgery to Minimally Invasive Surgery (MIS) meth-
ods, using instruments and an endoscope inserted through a
few small cuts in the abdomen (laparoscopy). This is motivated
by the lesser degree of morbidity and faster recovery of the
patient [1]. However, these methods introduce new challenges,
such as a limited field of view, the inability to palpate organs
for tumours, and the need for good hand-eye coordination [2].

To overcome these difficulties, considerable effort has been
invested in the development of Image Guidance Systems
(IGS), which highlight to the surgeon the positions of struc-
tures of interest such as tumours or vasculature [3]. This
is often complemented with Augmented Reality (AR) by
superimposing target structures over the organs (see Fig. 1).

Our IGS/AR system for liver laparoscopy [4] relies on
the creation of an intraoperative 3D reconstruction of the
liver during the operation, to which a preoperatively acquired
computed tomography (CT) scan is registered. This 3D re-
construction continuously integrates multiple point clouds,
incorporating sets of the following data: (i) a pose derived from
a simultaneous localisation and mapping (SLAM) method [5],
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Fig. 1. Augmented Reality visualisation of tumour (yellow) and vasculature
(blue & red) over liver

[6], and (ii) a dense point cloud created through disparity
estimation, which includes RGB color information from the
laparoscope (see Fig. 2). The rate of formation of these fused
point clouds is therefore constrained by the frequency of
availability of these data. Furthermore, the quality of the data
substantially impacts the resulting 3D reconstruction.

The disparity estimator we chose is the Hierarchical Stereo
Matching (HSM) network [7], as it delivers high-quality dense
disparity similar to state-of-the-art methods, while being faster
than comparable approaches. For the initial versions of our
system [8], we used inputs and outputs of reduced size
(Quarter HD). However, to achieve an acceptable throughput,
the resolution was downscaled even further, such that the net-
work processed only 1/16th (480×270 px) of the endoscope’s
FullHD resolution. This resulted in a significantly deteriorated
quality of the depth information.
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Fig. 2. Workflow (simplified) of IGS/AR system for liver laparoscopy.



In this work, we address the rate and quality of disparity
estimation in stereo laparoscopic imaging, and provide a
means of obtaining more accurate disparity estimation at
higher framerate. In accordance with the hardware conditions,
our goal is to process stereo images and produce disparities
with FullHD resolution (1920×1080 px) at the full endoscope
framerate (30 frames/s).

In the following section, we describe the methods and
techniques that were applied to reach this goal. These are
the result of an extensive investigation of the considered
algorithm, system, and suitable libraries and tools. Solutions
and parameters specific to our system setup will then be
discussed in Section III. This is followed by a presentation
of representative results of quality and speed measurements.

II. ALGORITHM AND METHODS

A. Algorithm and General Optimisations

A rough outline of the disparity estimation algorithm is
shown in the block diagram in Fig. 3a. The core of the
algorithm is the inference of the trained HSM network [7].
This neural network searches for stereo correspondences in a
coarse-to-fine hierarchy. Coarse resolution is used to estimate
large disparities, which are then employed to bias fine-scale
disparity estimates. In the optimisation, only a few modi-
fications, which do not change the network’s structure, are
feasible. This allows us to preserve the provided weights,
having been tuned on a large number of training samples.

The initial step is the pre-processing of the input images.
The algorithm receives a pair of rectified [9], [10] RGB stereo
images as input, which are converted to a suitable tensor data
format. This is complemented by the customary normalisation
of neural network input data (also standardisation [11]), and a
transposition and padding of the images to the expected shape.

After network inference, in the post-processing step, the
resulting one-dimensional array of disparity values is trans-
formed back to a 2D shape of the original resolution.

Direct optimisation measures include slimming loops (by
extracting instructions from them), removal of redundant code,
and replacement of unnecessary data copy operations. The
substitution of costly operations required a comparison of
different libraries to find the most efficient implementations.

B. Inference and Pre-processing Using TensorRT and DALI

As expected, the network inference proved to be the most
time-consuming part. In order to accelerate the inference while
maintaining the network structure and weights, we decided
to develop an implementation based on NVIDIA TensorRT
(TRT) [12]. This library and tool set for high performance
inference on GPUs optimises the inference using the CUDA
parallel programming model [13]. The internal data layers
can be processed using several (reduced) data types: 32-
bit floating-point (FP32), 16-bit floating-point (FP16), 8-bit
integer (INT8), and combinations thereof (mixed-precision).
This data reduction helps to reduce the memory footprint and
transport delays while increasing the processing speed, but
may come at the cost of reduced accuracy of the result.
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Fig. 3. Block diagram of disparity algorithm, a) original, b) with TensortRT
and DALI acceleration; processing lengths are symbolic.

The use of TRT first required an adaptation of the network to
TRT specifications (see Section III). We then investigated the
impact of various parameters on the resulting runtime engine.
Especially in the selection of data types and precision, we had
to balance disparity quality against speed and efficiency.

With a reduced processing time of the inference, the share of
the pre-processing step becomes more relevant. We designed
a GPU-centered pipelining approach for maximum through-
put in this step, using the NVIDIA Data Loading Library
(DALI) [14], [15]. To this end, we investigated available
DALI operators and their parameters to represent the original
functionality in the most accurate and, ideally, fastest way.

The introduction of TRT and DALI requires an adaptation
of the remaining algorithm to optimally feed the pipeline and
TRT engine. In connecting the building blocks, we had to
modify the recommended structure such that most operations
are executed on the GPU, and data transfers between CPU and
GPU are minimised, as sketched in Fig. 3b.

C. Multithreading

The methods described above exploit fine-grained paral-
lelism and pipelining to process one stereo image pair at a
time. They utilise only one processor core (single thread) and
are, moreover, designed for use on a single GPU. While the
methods render very good timing results (see Section IV), they
are still not sufficient to reach the formulated goal.

We therefore designed a multithreaded processing scheme
that allows a parallel execution of several CPU threads and
the usage of multiple GPUs (and combinations thereof).
This scheme is applicable to the disparity algorithm since
consecutive images have no data dependence on each other.
We developed various approaches using synchronisation and
threading mechanisms of the underlying system – due to space
restrictions only the most efficient solution is presented here.

At the first stage the sync module synchronises associated
stereo images and passes them on as pairs, with a special
tagging dependent on the envisaged number of parallel threads.
We are then able to distribute the disparity processing to
different execution threads and to assign these to distinct GPUs
(see Fig. 4). An even distribution of the load to threads is
intended, assuming an approximately even temporal distri-
bution of incoming image pairs. However, other distribution
schemes are possible within our approach, such as adapting to
heterogeneous CPU cores or GPUs.



III. IMPLEMENTATION

A. ROS Integration and Interfacing

The IGS system described in the introduction is built
using the ROS (Robot Operating System [16]) framework.
This framework facilitates modularisation and provides many
standard image processing modules. On the other hand, it in-
troduces overhead that makes adaptation of the code necessary.

On launch, the disparity module is initialised (especially
TRT engine and DALI pipeline). The processing itself is
executed in a callback function which has to be registered at
the beginning. The main control loop runs in the ROS kernel
and invokes this function when input data are available. In
the callback, our disparity module extracts information on the
received input images from the ROS data structure. After post-
processing of the inference results, an output data structure is
created and filled with disparity information.

B. Restrictions for TensorRT

When implementing the core element of our algorithm, the
network inference, the original PyTorch implementation has
to be adapted to the system requirements while preserving the
trained network weights. Since TensorRT (TRT) cannot work
directly on PyTorch networks, the network has to be exported
to the Open Neural Network Exchange (ONNX) format [17],
which is then processed to build the TRT engine. However,
the set of operations for both these steps is restricted, making
an adaptation of the neural network code inevitable.

The TRT engines were built for combinations of the avail-
able data types. In addition, several build parameters were
varied, leading to a large number of engine versions that had to
be compared with regard to quality and speed (in Section IV).

C. Pipeline Technique for DALI

The DALI library has originally been designed for pipelined
file processing. To utilise a DALI pipeline in ROS callbacks
we had to redefine the interface, now feeding one input
image pair into the pipeline upon each callback. In reference
implementations, the TRT data are copied to/from the GPU
using streaming transfers. We modified the TRT implementa-
tion such that the TRT engine operates directly on results of
the DALI pipeline in GPU memory, as indicated in Fig. 3b.
Similarly, the result of the TRT inference is kept in GPU
memory as well, enabling faster post-processing.

D. Multithreading Using ROS Threading Support

The sync module described in Section II synchronises in-
coming stereo images by means of their creation time stamps
[18]. For the thread tagging, a thread number t = c mod NT

(c - callback counter, NT - number of threads) is determined,
and is appended to the identifiers of the stereo image pairs.
In the ROS run scripts, disparity modules are then launched
in separate threads, processing only specifically tagged image
pairs. For an explicit Multi-GPU implementation the threads
can be assigned to the respective GPU identifiers. This scheme,
as outlined in Fig. 4, allows a very finely tuned exploitation
of the available CPU and GPU computing resources.
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Fig. 4. Synchronisation/distribution and multithreaded execution, with 4
threads on 2 GPUs and symbolic time-shifted execution in shown example.

IV. EXPERIMENTAL RESULTS

Many experiments were conducted during the development
of the implementation variants - concerning the ONNX export
parameters, TRT engine build parameters, data types, etc.
Throughout the data type models, the parameter combinations
with the optimum result regarding quality and throughput
were selected. We hence present here typical results for these
models that will also help to select the best fitting model
for a specific setup and task. Since the processing speed is
independent of the input data (only dependent on the model),
the timing results will be considered seperately.

Our reference model here (REF) is a ROS module with
the original ”serial” HSM algorithm processing FullHD
(1920×1080 px) data at the inputs, the output, and in the
network. We compare this reference to the following models:

• DS: ”Serial” model, data downscaled to 1/16 resolution
• 32: TensorRT engine & DALI pipeline, FP32 data only
• 16: TRT&DALI, mixed-precision data FP16 & FP32
• 816: TRT&DALI, mixed-precision INT8, FP16 & FP32
• 8: TRT&DALI, mixed-precision INT8 & FP32.

All implementations, except DS, work with FullHD data
throughout the module.

A. Quality results

Here we compare results of the disparity outputs for differ-
ent implementation models to those of the reference model
(index ref). As the key measure, we selected the relative
disparity error ed = |(d − dref)/dref |, with d - disparity.
Since d = fB/Z (with Z - depth, f - focal length and B -
stereo baseline), it is very similar to the relative error in depth
eZ = |(Z − Zref)/Zref | = |(d − dref)/d|, but avoids large
singular errors (outliers) due to small erroneous disparities.

We calculate ed at every pixel location, and from that the
mean of ed over the whole image ed, and the maximum of ed
in each image êd. In addition we restrict the error calculation
in each image to the region of interest, defined by the depth
of field (DOF) of the endoscope cameras. This limits the
observations to the range of depths over which point cloud
data will be used for the 3D reconstruction.

In Fig. 5 the mean relative disparity errors in the entire
image and in the DOF, over the whole data set, are displayed
for the above-named models in a boxplot. In Tab. I the errors
ed and êd, averaged over the whole data set, are listed for
the same implementations. We selected a typical data set of
926 stereo images, with a disparity range of [3.24, 560].
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Fig. 5. Mean relative disparity error over data set for different models

They were recorded with the EinsteinVision endoscope [19],
whose DOF of [20mm, 200mm] reduces the disparity range
to [48.5, 485]. Other available data sets render very similar
results and are omitted here due to space restrictions.

TABLE I
AVERAGE RELATIVE DISPARITY ERRORS

Model ed êd ed (DOF) êd (DOF)
DS 0.060 1.015 0.049 0.704
32 1.58·10−7 5.41·10−6 1.55·10−7 4.41·10−6

16 5.22·10−4 1.43·10−2 4.95·10−4 1.14·10−2

816 0.018 0.771 0.016 0.472
8 0.038 1.079 0.031 0.549

The measurements show very good quality for the models
32 and 16. The 816 and 8 models exhibit quite large maximum
errors, but perform better than the ”downscaled” model DS.

B. Timing results

Experiments and measurements were performed with the
same data sets as above, in two different environments:

• a laboratory setup with two workstations LA, LB, where
only pre-recorded data can be used,

• an Experimental Operating Room with a body phantom,
a stereo endoscope, and two workstations XA, XB, where
”live” experiments using the phantom are also conducted.

These cover a broad range of CPU and GPU configurations:

LA LB XA XB
CPU i7-2600 i9-9820X i9-10900X 2×Xeon 4216
GPU RTX2080Ti 4×RTX2080Ti RTX2080S 4×A5000

During implementation and optimisation of the processing
modules, timing analyses were most important. We utilised
several profiling tools to measure the run times (latencies)
of the functions and code sections. Considering the whole
processing chain, however, the throughput (average volume
of data per time) is much more significant – it also levels out
irregularities and variations of the load, and takes account of
parallel data processing (multithreading).

TABLE II
THROUGHPUT OF IMPLEMENTATION MODELS (FRAMES / S);

MODEL 8 OMITTED (VERY SIMILAR TO 816).

Target workstation LA LB XA XB
REF FullHD (1 thread) 2.4 2.8 2.4 2.9
DS 1/16 resolution (1 thread) 20.2 18.0 21.5 14.9
32 (1 thread / 1 GPU) 5.2 5.3 4.1 8.3
16 (1 thread / 1 GPU) 20.1 20.0 16.4 21.5
816 (1 thread / 1 GPU) 23.6 23.9 19.5 27.3
16 (2 threads / 1 GPU) 18.8 18.7 15.7 20.2
16 (2 threads / 2 GPU) - 40.3 - 42.9
16 (4 threads / 2 GPU) - 37.9 - 41.7
16 (3 threads / 3 GPU) - 60.6 - 64.9
16 (4 threads / 4 GPU) - 80.0 - 74.1
816 (2 threads / 2 GPU) - 47.8 - 51.0
816 (4 threads / 2 GPU) - 45.9 - 54.3
816 (3 threads / 3 GPU) - 71.9 - 60.2
816 (4 threads / 4 GPU) - 89.3 - 90.1

The throughput measurements (see Tab. II) for the reference
HSM network at FullHD (REF) are compared to the above-
listed models running on different workstations. The results
of model 8 are very similar to those of 816, and are excluded
here. For the TRT&DALI models 16 and 816, multi-threaded
and multi-GPU implementations were measured in addition.

Even single-threadedly, the TRT/DALI models achieve sig-
nificant accelerations to the slow REF model, but are below
full framerate. However, the multi-threaded solutions with
multiple GPUs accomplish dramatic improvements: Already
model 16 with just 2 GPUs fully satisfies our requirements
of 30 frames/s at FullHD resolution. The results with even
more threads and GPUs scale well, and suggest a means for
acceleration on less capable GPUs. The utilisation of more
threads than GPUs is of no advantage – similar results with
more threads are therefore omitted.

V. SUMMARY AND CONCLUSIONS

We presented an algorithm and implementation for fast and
accurate estimation of dense disparity maps. We successfully
improved and accelerated a state-of-the-art high-resolution net-
work to full frame rate (on 2 GPUs), by employing TensorRT,
DALI, and multi-core/multi-GPU execution.

The subsequent improved 3D reconstructions will lead to
more accurate registrations, and the increased speed will
deliver better usability from the perspective of the surgeon.
These benefits build towards the development of an IGS and
its translation into the operating room.

The presented solution can of course prove beneficial
in other medical or robotics applications where fast high-
resolution depth from stereo is indispensable. The relatively
high hardware demands of the current implementation could
be mitigated with new GPU generations (requiring only a
single GPU) or in applications where accuracy is less critical
(e.g. automotive sensing), and where our results can support
a trade-off between quality and speed.

The next challenge in this context is the lack of reference
data – an inherent problem of intraoperative methods. For a
human body phantom, however, the method obtains accurate
depth data. This will also allow us to numerically assess the
effect of disparity variations on 3D reconstruction.
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