
IcicleQuery: A Web Search Interface for Fluid Semantic
Query Construction

Annett Mitschick1, Franz Nieschalk2, Martin Voigt2, and Raimund Dachselt1

1 Technische Universität Dresden, Germany
annett.mitschick,raimund.dachselt@tu-dresden.de

2 Ontos GmbH, Leipzig, Germany
franz.nieschalk,martin.voigt@ontos.com

Abstract. In their need to find specific entities, lay users often rely on traditional
full text searches that render, in comparison to the capabilities of the Semantic
Web, an inferior approach. However, the access to semantic data is complicated
by technological barriers that non-experts have to overcome. Despite the attempt
to make the Semantic Web more accessible, only few user interfaces have been
created so far that combine the ease of keyword search with the structuredness
of relational queries. None of them focuses explicitly on lay users. This paper
presents an approach for closing this gap by fluidly combining the ability of full
text search and semantic search in a compact and comprehensible query inter-
face. Therefore, we designed and implemented an innovative web-based interface
based on the concept of Icicle Plots retrieving search results from a hybrid data
server. A first qualitative study revealed that the interface provides an expressive
but still approachable way of querying for specific entities and their accompanied
information.

Keywords: user interface; semantic search; keyword search; Icicle Plots

1 Introduction

Nowadays, information search is a main task of people’s digital life. Studies revealed
that specific entities and their accompanied information take a key role in users’ searches.
Kumar et al. [8] found that 52.9% of all queries are targeting them, while Guo et al. [6]
found that 71.0% contain them. Also Spirin et al. [13] confirmed that named entity and
structured queries are essential to address a diverse set of information needs of users.
Thus, users have the need to search with and for those entities but may find it diffi-
cult to achieve this goal by common interfaces. These usually build on the concept of
full text search which heavily rely on documents and their metadata [16]. In contrast,
faceted browsing [15] is a more entity-centric approach allowing for filtering things
based on their attributes. Unfortunately, filtering entities based on their relations is hard
to achieve via current user interface concepts.

However, the advent of Semantic Web technologies and Linked Data and their grow-
ing application in real world scenarios [3] but also the advance of graph databases un-
derline that linkage of data and entities is a first class objective during modeling, cre-
ation and usage of data. In the constantly growing mass of web documents, which es-
pecially increases by social media and user-generated content, technologies like Named

99

Entity Recognition enable the extraction of semantic information from unstructured text
which reveals more sophisticated opportunities for search and analytics.

With regard to the commonly used web search user interfaces and the growing
amount of interlinked data (which is also challenging in enterprise and industry sce-
narios [9]), our goal was to develop a smart search prototype that (1) is entity-centric,
(2) makes use of semantic information of an entity, and (3) allows to follow the links
between entities in order to specify complex queries. Despite the expectable complex-
ity, we wanted to achieve that (4) especially lay users, i. e. non-experts in the field of
ontology-based data modeling, could create semantic queries with little effort.

The key contributions of our work are

– a substantial reduction of the complexity of semantic query construction in order to
make it is easy to use for lay users,

– a new, extendable, space-saving user interface widget for semantic query construc-
tion based on the idea of Icicle Plots [7],

– fluid integration between full-featured text search and semantic querying (both on
the back-end and front-end side).

This paper is structured as follows: After reviewing related work in Section 2, we
describe our design decisions for the implemented search prototype and the proposed
integration between RDF data and a common full text search index in Section 3. Since
we conducted a qualitative user study to evaluate the prototype, we outline its execution
and the main findings in Section 4. Finally, we conclude our work and give an outlook
on the next steps and future research directions.

2 Related Work

With the aforementioned requirements in mind, we researched existing work with a
focus on exploratory semantic search interfaces and visual semantic query building.

A lot of research has been done in the field of exploratory semantic search interfaces.
As an example, Mirizzi et al. [10] introduced Semantic Wonder Cloud which enables
the exploratory traversal of entities from DBpedia through their relations. Based on a
selected starting node, users navigate the graph structure by a simple point-and-click
interaction on the next node. While this allows for an intuitive navigation, also for lay
users, this approach does not support complex (chained) queries that also reuse other
information of the entities. Another approach was proposed by Popov et al. [11]: Visor
allows the user to select multiple ontology classes of interest and to display them and
their direct relations in a node-link-diagram. Furthermore, it suggests indirect relations
over intermediary classes enabling the user to gather a conceptual overview of the un-
derlying data structure. Based on the selection, the data set is queried and the resulting
instances are presented in a spreadsheet-based user interface.

NITELIGHT [12] is an exemplary visual query builder that visualizes SPARQL
graph patterns as node-link diagrams. The tool reuses pre-loaded ontologies in order
to provide a general overview of all classes and properties. These can be dragged and
dropped onto the query canvas to configure the queries. Although this concept allows

IcicleQuery: A Web Search Interface for Fluid Semantic Query Construction

100

the construction of complex queries, the textual visualization and the focus on SPARQL-
like queries are targeting expert users.

Another example is Graph Pattern Builder [1] which provides a form-based query
building approach. The user can only choose from suggested entries according to her
precedent input to make sure that the constructed query is syntactically and seman-
tically correct. However, fundamental knowledge about SPARQL-queries is required,
e. g. regarding the definition of variables.

The hybrid index by Bast and Buchhold [2] allows for another kind of iteratively
constructing queries. Based on the user’s input, context-sensitive suggestions for words,
classes, relations, and instances are retrieved and added to a tree structure. This reduc-
tion of complexity from graphs to trees as well as the concept of a query builder that
facilitates full-text and semantic queries shaped our own vision for a search user in-
terface. However, their visualization represents the query components in a technical
manner like classes, etc., hence, user need certain knowledge about underlying ontolo-
gies.

A general finding is that existing tools try to allow for comfortable interaction with
interlinked data but are more or less targeting expert users since their visualization
makes heavy use of (complex) graphs or textual queries. Vega-Gorgojo et al. [14] re-
ported on the results of a user study comparing the prototypes of a form-based and
a graph-based interface to assess the effectiveness of visual query interfaces. They
found evidence that experts prefer graph-based interfaces while mainstream or lay users
“obtained better performance and confidence with the form-based interface” which is
“more easily learned and relieves problems with disorientation”. Query construction
benefits from term suggestion for classes, relations and literals during typing. This helps
to overcome the burden of less domain knowledge and is a widely used technique for
keyword-based search today.

Based on these reflections, the next section covers our conceptual approach and its
prototypical implementation.

3 Design and Prototype

The two main thoughts regarding our concept included firstly how to combine the abil-
ities of full-text and semantic search in a single hybrid data server (3.1) and secondly
how to represent both keywords and semantics in an intelligible user interface (3.2).

3.1 The Search Back-end

Alongside with the front-end concept, a basic decision regarding the search back-end
was required. Since we tried to accomplish a semantic search on Linked Data based
on the RDF standard, the two obvious candidates were to use either a triple store or a
dedicated full-text search engine. The advantages of a triple store are to work directly
on the RDF data and use SPARQL as standardized, powerful query language. On the
other side, a search engine like Apache Solr3 or ElasticSearch4 scores regarding features

3 https://lucene.apache.org/solr/
4 https://www.elastic.co/products/elasticsearch

IcicleQuery: A Web Search Interface for Fluid Semantic Query Construction

101

like advanced, fast full-text search, faceting, aggregations or query suggestion. As the
decision was less about storing data but more about searching and analyzing, we chose
to use a search engine (Solr in particular) as back-end and extend it with semantic
capabilities.

Data Import In order to transform the RDF data to a Solr schema, we defined a domain
independent, flexible schema that allows for mapping RDF triples (subject, predicate,
object) to different field types. Here, the URI of the subject - the entity to search for
- is used as basic document ID. For each predicate, a field based on the wildcard syn-
tax is automatically created where the field value is the object. In order to keep any
available language tags, e. g., for labels, extra fields are generated. Based on this rough
concept, we could adequately index ontologies and instance data likewise. As long as
the incoming data follows the OWL specification and uses XSD datatypes, any entity
can be consumed and stored in the Solr index. Sufficient model information must be
provided for the front-end query builder, especially rdf:type and rdfs:label
of classes and properties, and queryable instances should have a rdfs:label and a
rdfs:comment to reasonably execute full-text search on them.

Query Formulation Another important concept was to create relational, nestable Solr
queries representing adequate SPARQL queries. Basically, Apache Solr 6 provides two
mechanisms for this type of queries: !join and graph traversal operations. We de-
cided on the first since graph traversal is used for collecting documents along a path of
properties rather than being a pure inner query like !join. These operations could be
nested based on the possibility of the LocalParams syntax yielding to deep structures
of relational statements. Each subject of those statements is held in a unique parame-
ter (e. g., l0p0n0) and maps its properties to the field names that corresponds to the
index schema. An example Solr query is shown in Listing 1.1, comprising two nested
!join operations (equivalent to the scenario in Figure 1). As the example query shows,
keyword searches are executed on labels and comments, where matches on labels are
boosted twice as much as comment hits. It is also important to note that we are de-
valuing keyword matches the deeper they are located in the structure and thus, “further
away” from the search target. Depending on the node level l the base boost b is equated
by b = 1

1+l·0.1 , but it should be part of ongoing work to determine a more appropriate
formula for this purpose.

Performance Knowing that nested Solr !join queries may not perform as well as reg-
ular Solr queries [4], we tested the performance of our back-end solution by measuring
the query time for queries of rising complexity, starting from a query that contains no
!join operation up to a chained query of eight nested !join operations. The tests
were performed on two datasets, one containing 38K and the other 133K entities (3.5
times more). We only measured the first query execution and hence without making
use of Solr’s caching functionality. The results (cf. Figure 2) show that nested !join
queries of depth 1, 2 and 4 do not increase query time significantly, but a very signifi-
cant increase was measured for queries with 8 nested !join operations. However, we
considered queries of this depth to be not representative being rather too complex for

IcicleQuery: A Web Search Interface for Fluid Semantic Query Construction

102

Fig. 1. Overview of the IcicleQuery web search user interface: (1) query builder, (2) result list,
(3) additional information about a selected resource.

humans (esp. lay users) and leading to a very high specificity of the query issuing too
few or even no search results.

3.2 IcicleQuery: The Search Front-end

From the reflections of existing work, we draw the conclusion that as lay users are in
general not familiar with semantic graphs, its classes and relations, the user interface
should try to abstract from them as much is possible. According to Fu et al. [5], tree-
like representations are more intuitive for lay users than graphs. Thus, a hierarchical,
tree-like visualization seems to be recommendable. The fundamental idea of our query
builder is to reduce the query and visualization complexity from directed graphs to
trees. Although this decision implies that not all types of graph patterns could be used
for a query, lay users might not need them. With this foundation, we gathered different
types of tree visualizations and, finally, considered the approach of Icicle Plots [7] as
most suitable. This kind of representation is easy to understand and to layout as well
as usable for mouse and touch interactions. Furthermore, using a horizontal layout it is
an especially compact representation allowing for a space-saving design of the query
component, which is most suitable for devices with small displays, and leaves enough
room for the result presentation.

A vital principle is a fluid word-completion functionality for all text entry fields in
the query builder, providing suggestions for either classes, relations or literals by just
typing desired terms. This helps to overcome the burden of less domain knowledge

IcicleQuery: A Web Search Interface for Fluid Semantic Query Construction

103

Listing 1.1. An example of a Solr query

?q=*:* AND ${l0p0n0}
&l0p0n0=rdf_type:"dbo:Film" AND
{!join from=id to=dbo_director_rdf_uri_res

score=total v=$l1p0n0} AND
dbo_runtime_xsd_double_lit:[120 TO 180]

&l1p0n0=rdf_type:"dbo:MovieDirector" AND
{!join from=id to=dbo_birthPlace_rdf_uri_res

score=total v=$l2p0n0}
&l2p0n0=rdf_type:"dbo:Place" AND
(en_rdfs_label:(hong kong)ˆ1.66 OR

en_rdfs_comment:(hong kong)ˆ0.83)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 1 2 3 4 5 6 7 8

38K en��es 133K en��es

qu
er

y
tim

e
in

 m
s

of nested !join
operations

Fig. 2. Query time (in ms, y-axis) depending on the number of entities and the number of nested
!join operations (x-axis).

and is consistent to user expectations, as it is a common feature of today’s web search
engines.

Figure 1 provides an overview of the complete web-based search user interface.
While the user creates a semantic query in the IcicleQuery builder 1 , suitable results
are shown immediately below 2 . Clicking on a result provides additional information
from the knowledge graph 3 . Our work focused especially on the query builder 1 ,
which is described in the following.

A query construct in IcicleQuery comprises of at least one but usually multiple
nodes that are visualized as horizontal aligned squares (Figure 1- 1). Each node of the
tree, including the root node, is initiated based on a search in a text input field. During
typing, suitable terms are suggested which are derived from the underlying ontology and
instance data. As a class is selected (like actor in Figure 3), its human readable label
is shown as visual representation. According to the general application language and
the available labels in the data, it is easy to change the name of the node dynamically.

IcicleQuery: A Web Search Interface for Fluid Semantic Query Construction

104

Fig. 3. Iterative construction of the relational statement “Find actors that are known for movies”.

Fig. 4. Several node types provide specific input widgets: (1) text input with word completion,
(2) node representing a class filter, with the ’+’-button to add a subsequent filter, (3) options to
declare a filter to be optional or to be the new target (inverting the subtree), (4) date selection, (5)
removing a boolean filter with the ’-’-button, (6) tooltip for abbreviated labels, (7) interval input.

Furthermore, the selection of a class is required to add additional filters to the query. The
available filters are directly gathered based on the class’ attributes and relations. The
small example in Figure 3 shows two nodes creating a semantic query for “Find entities
of the type actor that are linked to entities with the type of movies”. The according
semantic query using SPARQL syntax would result in a construct of three graph patterns
– the underlying query complexity is thus hidden from the user.

By setting no target class, it is also possible to utilize the first node as a conventional
full text search, giving inexperienced users the option to bypass advanced query builder
features. Since new full text search nodes can be attached to the tree, keyword searches
may also be applied to nodes that are positioned deeper in the structure.

The more advanced example in Figure 1 shows further possibilities to extent the
query. First, there could be more than one filter attached to an existing node that repre-
sents a class or a relation. Here, the sought movie should be “directed by a director‘”
and should have a defined runtime. Second, the filter for the runtime but also for the
birthplace show the possibility to restrict entities according to parameter values. Since
the data types are known, the filter widgets are adapted to them. Up to now, we im-
plemented widgets for text, boolean values, numeric ranges and date selections (see
Figure 4). Moreover, based on the range of the literal values, the user can only cre-
ate valid queries that do not lead to empty result sets. This concept was adopted from
Faceted Browsing.

A very sophisticated feature is the ability to switch the reading direction of the
query by defining a new search target from the existing query with one click. After

IcicleQuery: A Web Search Interface for Fluid Semantic Query Construction

105

selecting an object of the query statement as new target the object becomes the subject
of a rearranged query.

The current version of IcicleQuery is implemented as a component of Ontos EIGER5,
a web-based Linked Data suite for semantic data integration, including a flexible dash-
board in order to allow for data visualization and search for none-data scientists. The
IcicleQuery prototype was realized using AngularJS and Bootstrap. A working demo
can be tried out here: http://demo.ontos.com/dashboard.

4 User Study

In order to understand the applicability and suitability of our concept and receive pre-
liminary feedback for further development, we conducted a formative, qualitative user
study. We especially focused on a comparison between experts and lay users to evalu-
ate the potential to reduce the complexity of semantic search. The two main questions
we were interested in were: What are the differences between experts and lay users
when using the query builder? Which kind of search tasks is it most suitable for? In the
following, we describe the design and setup of the study and our results in more detail.

4.1 Procedure

Ten participants volunteered (three female; age between 21 and 40), each session lasted
around 30-40 minutes. Besides our target group of six lay users, we also ran tests with
four users that had deeper expertise in the field of Semantic Web technologies, acting
as a reference group. All of the participants stated, that they regularly search for spe-
cific entities in common web search engines. The test data for the study was extracted
from DBpedia and contained a small set of about 40k distinct entities related to the DB-
pedia category dbc:2010s films. The corresponding model contained 39 distinct
classes and properties. We chose a small set to better control the expected result sets
and evaluate the search performance of the subjects.

Each session consisted of three parts: (1) free exploration, (2) search tasks, and (3)
a questionnaire. The study started with an explanation of the search domain without
showing any data model. In order to evaluate the intuitiveness of the prototype, the
subjects were asked to try out the search widget on their own. We let the users freely
explore the interface and observed their behavior. We were especially interested if they
would identify query construction features, e. g., how to add new query nodes to create
filters, on their own. After that, we gave a brief introduction to the advanced search
features of the interface, which were needed to perform the following tasks. Every user
had to solve four different search challenges of increasing complexity in order to find
specific movies, actors or production companies in the data set:

1. Find a movie titled “The Revenant”.
2. Find actors who received an “Oscar” (Academy Award).
3. Find a film studio that produced a movie with a title containing “Love”.
4. Find an actor known from a movie directed by someone called “Chan”.
5 http://ontos.com/

IcicleQuery: A Web Search Interface for Fluid Semantic Query Construction

106

The users had to build a suitable query for the given demand with the help of the
query builder, being told to formulate queries only until they were content with the
search results. Based on the thinking-aloud methodology, we gathered helpful feedback
about the cognitive model of the subjects. These observations were completed by a
follow-up questionnaire, which inquired qualitative feedback about user satisfaction,
the perception of easiness and precision, and preferences for either Google-like search
or our IcicleQuery interface using Likert-scales. Further on, we asked which tool they
would prefer for which tasks.

4.2 Results

(1) Free exploration: The experts (reference group) did not need guidance to identify
and apply the advanced query-building features and easily adopted them. The lay users
did not expect those features, but they attempted the full-text search in order to access
the data. Only 2 of 6 lay users identified the functionality to add new nodes to the Icicle
in order to extend the query and restrict the result set on their own. Although this is
heavily a usability issue, since the +-button was too small and only shown on mouse-
over, we found that especially lay users did not search for the possibility to add a new
relation, but tried to type everything into the first box.

(2) Search tasks: After a short explanation of the basic interaction concepts, all sub-
jects, both experts and lay users, were able to solve the given tasks immediately and
correctly with neither considerable interruptions nor further questions regarding the
query construction.

(3) User feedback from the questionnaires: The results from the questionnaires were
particularly encouraging since 6/10 stated that IcicleQuery seemed to be faster, and
10/10 found that the results were more precise compared to traditional web search.
For tasks only requiring keyword search 8/10 would have preferred Google, but with
growing task complexity IcicleQuery was judged superior (cf. Figure 5). Regarding
the question “How well did you solve the given tasks from your point of view?” (very
good/good/poor/very poor) 2/10 of the participants chose “good”, 8/10 “very good”.

From the given feedback we conclude that in general the participants (i) found the
visualization appealing and understandable, (ii) were content with the complexity of
specifiable queries, (iii) thought they satisfyingly fulfilled the search tasks, and (iv) en-
visioned using the interface for general as well as specific search tasks. While all lay
users were satisfied with the capabilities of the interface, the expert users missed addi-
tional features like declaring statements as negative (NOT) or temporarily deactivating
branches of the tree. Together with the usability issues, this provides valuable feedback
for further development.

4.3 Discussion

We admit that the number of subjects is rather small and in general not sufficient to give
adequate proof for any claims. However, we sought preliminary, qualitative feedback
to further enhance the prototype to address usability issues. It is not our objective to

IcicleQuery: A Web Search Interface for Fluid Semantic Query Construction

107

0 1 2 3 4 5 6 7 8 9 10

Task 1

Task 2

Task 3

Task 4

Traditional Web Search Undecided IcicleQuery
participants

Fig. 5. Preferences of the participants for a search solution depending on the search task (growing
complexity from 1 to 4).

judge between search principles or give general preference to semantic querying. Using
a high-level query language (SQL, SPARQL) is the most sophisticated, precise way
to make use of the semantic richness of complex data sets, but lay users are mostly
unable to cope with their complexity. Thus, our goal was to create an easy to use user
interface yet providing the power of a rich query language. The promising results of the
study and the positive feedback of the participants suggest that we took a large step in
this direction. On the other hand, we clearly understand that there are still a couple of
usability issues to be solved in order to improve clarity and learnability of the interface
to do without specific guidance or assistance.

5 Conclusion and Future Work

In this paper we introduced an innovative, space-saving search interface based on an
adaptation of the concept of Icicle Plots. It fluidly combines the features of a sophisti-
cated search engine, e. g., advanced text search, faceting or aggregation, with the capa-
bilities of Linked Data sources. Our approach allows for an advanced semantic search
especially for lay users who are not familiar with the underlying concepts. We success-
fully evaluated our concept based on a prototypical implementation using Apache Solr
as flexible back-end for indexing RDF data. A qualitative user study revealed some us-
ability issues and underlined that semantic search is (still) a new topic for lay users.
However, it also shows the feasibility of our concept since all participants solved all
tasks efficiently and correctly. Furthermore, with increasing complexity of the search
task the participants gave preference to IcicleQuery as search interface of choice.

For future work, we plan to improve the intuitiveness and extend capabilities of the
user interface while maintaining its fluid and lightweight habit. As for the mentioned
usability issues we aim at incorporating visual hints for query construction and let users
find filter suggestions by synonymous terms through the integration of dictionaries or
thesauri. Another improvement could be to hierarchically cluster the suggested lists of
properties or classes in case of too many items. For a wider range of functions, we also
envision the re-use of specific entities in queries, the ability to shift search focus to

IcicleQuery: A Web Search Interface for Fluid Semantic Query Construction

108

properties or literals or to an aggregation of multiple entities, and enabling the user to
configure sorting criteria and priorities through weighting parameters.

Acknowledgements

This work is partly funded by the German Federal Ministry of Education and Research
under promotional reference number 03WKCG11B.

References

1. Auer, S., Lehmann, J.: What Have Innsbruck and Leipzig in Common? Extracting Semantics
from Wiki Content, pp. 503–517. Springer Berlin Heidelberg, Berlin, Heidelberg (2007),
http://dx.doi.org/10.1007/978-3-540-72667-8_36

2. Bast, H., Buchhold, B.: An index for efficient semantic full-text search. In: Proceedings
of the 22nd ACM International Conference on Information & Knowledge Management.
CIKM ’13, ACM, New York, NY, USA (2013), http://doi.acm.org/10.1145/
2505515.2505689

3. Bernstein, A., Hendler, J., Noy, N.: A new look at the semantic web. Commun. ACM 59(9),
35–37 (Aug 2016), http://doi.acm.org/10.1145/2890489

4. Erickson, E.: Solr and joins: Experimenting with join performance.
https://lucidworks.com/blog/2012/06/20/solr-and-joins/ (06 2012), https://
lucidworks.com/blog/2012/06/20/solr-and-joins/

5. Fu, B., Noy, N.F., Storey, M.A.: Indented Tree or Graph? A Usability Study of On-
tology Visualization Techniques in the Context of Class Mapping Evaluation, pp. 117–
134. Springer Berlin Heidelberg, Berlin, Heidelberg (2013), http://dx.doi.org/10.
1007/978-3-642-41335-3_8

6. Guo, J., Xu, G., Cheng, X., Li, H.: Named entity recognition in query. In: Proceedings of
the 32nd Int. ACM SIGIR Conference on Research and Development in Information Re-
trieval. SIGIR ’09, ACM, New York, NY, USA (2009), http://doi.acm.org/10.
1145/1571941.1571989

7. Kruskal, J.B., Landwehr, J.M.: Icicle plots: Better displays for hierarchical clustering. The
American Statistician 37(2), 162–168 (1983)

8. Kumar, R., Tomkins, A.: A characterization of online browsing behavior. In: Proceedings of
the 19th International Conference on World Wide Web. pp. 561–570. WWW ’10, ACM, New
York, NY, USA (2010), http://doi.acm.org/10.1145/1772690.1772748

9. Marco F. Huber, Martin Voigt, A.C.N.N.: Big data architecture for the semantic analysis of
complex events in manufacturing. In: 2nd International Workshop on Big Data, Smart Data
and Semantic Technologies (BDSDST). INFORMATIK 2016 (2016)

10. Mirizzi, R., Ragone, A., Di Noia, T., Di Sciascio, E.: Semantic Wonder Cloud: Exploratory
Search in DBpedia, pp. 138–149. Springer Berlin Heidelberg, Berlin, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-16985-4_13

11. Popov, I.O., Schraefel, M.C., Hall, W., Shadbolt, N.: Connecting the dots: A multi-pivot
approach to data exploration. In: Proceedings of the 10th International Conference on The
Semantic Web - Volume Part I. pp. 553–568. ISWC’11, Springer-Verlag, Berlin, Heidelberg
(2011), http://dl.acm.org/citation.cfm?id=2063016.2063052

12. Russell, A.: Nitelight: A graphical editor for sparql queries. In: Proceedings of the Poster
and Demonstration Session at the 7th International Semantic Web Conference (ISWC2008).
pp. 110–111. ISWC-PD’08, CEUR-WS.org, Aachen, Germany, Germany (2008), http:
//dl.acm.org/citation.cfm?id=2889529.2889584

IcicleQuery: A Web Search Interface for Fluid Semantic Query Construction

109

13. Spirin, N.V., He, J., Develin, M., Karahalios, K.G., Boucher, M.: People search within an on-
line social network: Large scale analysis of facebook graph search query logs. In: Proc. of the
23rd ACM Int. Conference on Information and Knowledge Management. CIKM ’14, ACM,
New York, NY, USA (2014), http://doi.acm.org/10.1145/2661829.2661967

14. Vega-Gorgojo, G., Slaughter, L., Giese, M., Heggestyl, S., Soylu, A., Waaler, A.: Vi-
sual query interfaces for semantic datasets: An evaluation study. Web Semantics: Sci-
ence, Services and Agents on the World Wide Web 39, 81 – 96 (2016), http://www.
sciencedirect.com/science/article/pii/S1570826816000159

15. Yee, K.P., Swearingen, K., Li, K., Hearst, M.: Faceted metadata for image search and brows-
ing. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems. CHI ’03, ACM, New York, NY, USA (2003), http://doi.acm.org/10.1145/
642611.642681

16. Zhou, M.: Entity-centric search: querying by entities and for entities. Ph.D. thesis, University
of Illinois at Urbana-Champaign (2015)

IcicleQuery: A Web Search Interface for Fluid Semantic Query Construction

110

