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Figure 1: Our MIRIA toolkit supports the co-located, in-situ analysis of spatial interaction data by multiple users in Augmented
Reality. It provides 3D visualizations, e.g., trajectories and trails, and 2D visualizations, e.g., scatterplots and heatmaps. MIRIA
also supports 3D models, videos, and pictures placed in space, providing additional context to the data.

ABSTRACT
In this paper, we present MIRIA, a Mixed Reality Interaction Analy-
sis toolkit designed to support the in-situ visual analysis of user
interaction in mixed reality and multi-display environments. So far,
there are few options to effectively explore and analyze interaction
patterns in such novel computing systems. With MIRIA, we ad-
dress this gap by supporting the analysis of user movement, spatial
interaction, and event data by multiple, co-located users directly
in the original environment. Based on our own experiences and
an analysis of the typical data, tasks, and visualizations used in
existing approaches, we identify requirements for our system. We
report on the design and prototypical implementation of MIRIA,
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which is informed by these requirements and offers various visu-
alizations such as 3D movement trajectories, position heatmaps,
and scatterplots. To demonstrate the value of MIRIA for real-world
analysis tasks, we conducted expert feedback sessions using several
use cases with authentic study data.
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• Human-centered computing → Mixed / augmented reality;
Visualization toolkits; • Information systems→ Data analytics.
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1 INTRODUCTION
In recent years, immersive and multi-display environments receive
increased interest both from practitioners and researchers, gain-
ing traction besides traditional desktop or mobile usage scenarios.
They make use of a variety of setups such as large interactive dis-
play walls or mixed reality head-mounted displays, sometimes in
combination with spatially tracked mobile devices or additional,
stationary displays. In visualization research, for example, Immer-
sive Analytics [54] combines the use of mixed reality technologies
with natural and embodied user interaction to support the visual
analysis of data in immersive environments.

In an effort to gain insight into how people use such novel setups,
user studies are conducted that frequently result in a large body
of heterogeneous, spatio-temporal data of movements, user inter-
actions, and other events that need to be visualized and analyzed
to gain the desired insights. However, today’s analysis tools (e.g.,
[8, 74]) are mostly 2D, single-user, and confined to desktops, distanc-
ing the analysts from the often rich and complex environments that
might have a crucial impact on the users’ behaviors. For example,
patterns in the data may not be obvious during analysis from a fixed
point of view or hard to explain without the original environmental
context. Furthermore, classic tools often do not adequately support
the various forms of multi-modal interaction employed in advanced
computing environments [10], which combine input channels such
as user movement, mid air gestures, pen & touch, and gaze.

We believe that visualizing interaction data in-situ, i.e., directly in
the original environment, can support the analysis of spatial inter-
action in multi-display and Augmented Reality (AR) environments.
To this end, we designed a toolkit, called MIRIA (Mixed Reality
Interaction Analysis toolkit), that allows this form of in-situ data
exploration and analysis by embedding AR visualizations of spatial
interaction data into the physical locations were it was originally
recorded.

We support the visual analysis of different interaction data as it
is typically recorded in user studies: On one hand, we visualize 3D
trajectories based on tracked, mostly three-dimensional, position
data. This includes the movement of people in the environment,
paths of mobile devices and controllers in spatial interaction, and
virtual camera paths. On the other hand, we provide configurable
2D views, situated in the 3D environment, that can be used to
visualize both 2D projections of spatial data, e.g., user positions on
the floor, as well as 2D events on a surface or display, e.g., touches on
a display wall. We also support aggregated views such as heatmaps
or scatterplots.

The three main scientific contributions of this paper, and its
general structure, are as follows:

Our first contribution is the concept of in-situmixed reality analy-
sis for spatio-temporal interaction data recorded in Augmented
Reality and multi-display environments, including its requirements
and challenges. Based on a systematic review of the related work
and our own experiences in researching spatial and multi-modal
user interaction, we thoroughly analyzed existing methods for the
analysis of spatial user interaction. We specifically investigated typ-
ical, domain-specific analysis tasks, the most common data types
and sources, and which visualizations are already used. From this
review, we derive requirements and typical challenges of in-situ

interaction visualization and analysis. Informed by these require-
ments, we present the concept of our MIRIA toolkit, highlighting
how position and event data can be visualized and how we envision
users to interact with such a system.

Our second contribution is to show the technical feasibility of our
concepts by presenting a working prototypic system. We describe
the setup, important design choices, and implementation details
of our MIRIA toolkit. In contrast to many existing solutions, our
toolkit is multi-user capable and thus allows for a co-located, collab-
orative visual analysis, e.g., pairing experts from human-computer
interaction (HCI) and different target domains. The MIRIA toolkit
runs self-contained on one or more Microsoft HoloLens Augmented
Reality head-mounted displays and can easily be deployed in a vari-
ety of different environments, independent of any instrumentation
such as an external tracking system or a central data server.

Our third contribution is a preliminary evaluation illustrating
how our approach might be advantageously used in the collabora-
tive visual analysis of study data. We do so by reporting on practical
walkthroughs of our system with experts using real data from four
user studies, two of which we discuss in more detail. These example
case studies cover different technical setups (mixed reality, a large
display wall, and a multi-display environment), various interaction
modalities (touch, tangibles, distant pointing, spatial input), and
both single- and multi-user scenarios.

2 BACKGROUND & RELATEDWORK
Our work is intersecting several fields of research. In the following,
we will first look into classic, mostly desktop-based, analysis of
user interaction and, briefly, movement data in other contexts. In
contrast to most of the existing systems, our approach is centered
on the exploration of immersive, in-situ visualizations of spatial
interaction data. Because of this, we then also discuss related work
in the developing field of Immersive Analytics.

2.1 Analysis of User Interaction & Movement
Data

Mostly, desktop-based or web-based analysis tools are used to ex-
plore and analyze user interaction in HCI user studies. Techniques
for the analysis of the interaction with classic graphical user inter-
faces include, e.g., heatmaps of gaze or click data [33, 55]. However,
for the analysis of spatial interaction or user behavior in virtual
environments, specialized tools are necessary. For instance, GI-
AnT [74] allows to analyze users’ locomotion and territoriality in
front of a large multi-touch display wall. It provides 2D visual-
izations like heatmaps and scatterplots to show user movements,
interactions and gaze data on the wall display, and captured video
streams along with basic statistics like distance from the display or
touch frequency. Brudy et al. [8] provide an analysis tool to study
group interaction like f-formations of people and devices. Their tool
allows to visualize people’s position and movement over periods of
time with trajectories, video playback, and heatmaps. Furthermore,
it supports search queries to identify proxemic zones or attention
grouping. VisTACO by Tang et al. [71] is a tool to identify patterns
of spatial behavior during collaboration on interactive tabletop
surfaces. With the desktop-based tool, the recorded interaction
sequences of multiple users at a tabletop can be visualized.
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There are also tools for the analysis of specific sensors andmodal-
ities. For example, Kinect Analysis [59] targets Microsoft’s Kinect
sensor to track and visualize body movements, and GestureAnalyzer
[42] focuses on the analysis of gesture data. Further tools to visu-
alize time-based user or group interaction data are EXCITE [53],
VICPAM [57], ChronoViz [30], and Panoramic [80]. VU-Flow [19] is
an earlier example for the analysis of movement patterns in virtual
environments, supporting 2D trajectory plots, heatmaps, and flow
maps. Also, there are commercial solutions for interaction analysis
in Virtual Reality (VR) and Augmented Reality (AR) applications,
such as Cognitive3D1.

Similarly, there have been efforts towards the visual analysis of
player behavior in computer games, both by game developers and
researchers. Often, such applications make use of heatmaps, line of
sight visualizations, andmovement trajectories (e.g., [25, 37, 44, 56]).
There are also examples for multivariate graph visualizations of
player movement or progress (e.g., [58, 78, 79]) and for location-
based games [22]. Typically, and in contrast to our approach, these
game play analyses are done in external, desktop-based tools. Spa-
tial exploration of interaction traces or an in-situ representation of
the data are rare (e.g., [47]).

While existing classic tools provide powerful (mostly) 2D vi-
sualizations to analyze user interactions or movements, often the
spatial context of user positions and movements is missing. For
instance, questions such as “Why are there gaps in the trajectory
plots?”, “Why do users always initiate interaction from a certain po-
sition?”, or “Why are certain postures adopted?” are hard to answer
with these tools. We believe that the exploration of these phenom-
ena can benefit from an in-situ analysis by clearly showing spatial
relations between the data and the environment, e.g., movement
around physical obstacles like tables or chairs, in a 1:1 scale. Such a
system may also help to analyze resulting occlusion, for example in
co-located collaboration, similar to the tools presented by Fender
et al. for display [28] and virtual content placement [27].

Besides user interaction, spatial data from a multitude of other
domains is also visually analyzed. These domains include visual-
izing movement in contexts such as museums [49, 83] or sports
[81], traffic monitoring and surveillance [35, 72], the migration of
animals [46], and flight and naval vessel paths [3, 64, 75]. A survey
by Andrienko & Andrienko [2] gives an overview of visual analyt-
ics for movement data. Most of these systems are based on classic
desktop setups. The spatial context is typically shown as maps or
by compositing the visualizations with video recordings. Also, in
most of the domains mentioned above, the data is two-dimensional
or does not require a 3D representation. Therefore, mostly 2D pro-
jections are used. In contrast, in our domain the height of users or
the 3D-spatial movements of tracked devices are often important.
Our data also differs in that user studies typically include relatively
few trajectories with high complexity, compared to many of the
examples given above, in which many simple trajectories need to
be considered.

2.2 Immersive Analytics
Immersive Analytics (IA) [18, 54, 67] makes use of novel display
technologies such as mixed reality headsets or large display walls

1See https://cognitive3d.com/

together with spatial or embodied interaction [10] to facilitate the
immersive analysis of data. A recent and extensive survey on IA
was written by Fonnet and Prié [29]. Our work is related to IA in
two ways: On one hand, our system can be categorized as IA itself,
both in the technologies that we use, as well as the major design
principles that we employ. On the other hand, we contribute to the
field of IA by presenting an approach that allows to analyze inter-
action in a wide range of existing and future Augmented Reality
Immersive Analytics systems.

IA suggests itself for collaborative settings [6, 17, 52], allowing
user-specific information to be presented via head-mounted dis-
plays (HMDs) [41, 70] or to extend (interactive) display surfaces
with further AR information visualizations [15, 63]. Another po-
tential advantage of IA is the possibility to use the whole body for
interaction in an immersive Visual Analytics environment [31, 45]
and to support situated visualizations, either directly attached to
physical objects with relation to the data [26] or using them as
landmarks that provide a frame of reference [12, 15].

Several recent examples underline the feasibility of IA systems
for the exploration of spatio-temporal data: In Fly with the flock [46],
Klein et al. examined the visualization of bird tracking data in dif-
ferent technical mixed reality setups. Filho et al. [77] presented a
space-time cube visualization for the immersive VR visualization
of trajectory data. Following the VirtualDesk [76] metaphor, the
trajectories were shown above a 2D map rendered on a virtual
desk environment. They found a lower perceived mental workload
for their system compared to a conventional setting, indicating
the usefulness of immersion for this type of trajectory visualiza-
tion. Similarly, Yang et al. [82] examined different forms of origin-
destination flow maps, finding evidence that a 3D representation
can be beneficial. Batch et al. [5] presented one of the first extensive,
mixed-methods studies on Immersive Analytics, testing the ImAxes
system [21] with expert domain users. Among other measurements,
they collected tracking data and analyzed it to find out how users
moved in VR and how/where they arranged views such as scatter-
plot matrices or parallel coordinate plots. For collaborative analysis
of multidimensional data, Butscher et al. [15] use an AR environ-
ment with an interactive tabletop to support fluid interaction and
provide a set of guidelines for such tools.

In the last years, VR and AR frameworks for immersive data
analysis have been developed, enabling scientists to explore their
multidimensional or spatio-temporal data, sometimes collabora-
tively. Besides general frameworks (e.g., [14, 20, 63, 66]), there are
also some specializations like FiberClay [38], where users can visu-
alize multidimensional data as 3D trajectories with abstract data
attributes in VR (e.g., air traffic data).

Recently, Agarwal et al. [1] presented an analysis of the design
space for visualizing user actions in mixed reality. This is similar
to our analysis of prior work in section 3.1 but covers mostly 2D
visualizations. Closely related to our work, Kloiber et al. [47] enable
the analysis of user motion in the same VR environment in which
the data was recorded, focusing on 3D trajectories and visualization
of key events along the timeline. In comparison, our work focuses
on real and AR environments. Very relevant to our work is also
MRAT by Nebeling et al. [60], a mixed reality analytics toolkit
that has been presented recently. MRAT can be tightly integrated
into Unity applications for Microsoft’s HoloLens and allows the
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visualization of user data, including support for data collection and
pre-processing. The authors present the example use case of a crisis
simulation and triage training application.

In contrast to previous work, we focus less on application inte-
gration & evaluation and more on the analysis of logged study data
in its physical environment. Also, we present various combinable
in-situ visualizations not supported in MRAT [60] or by Kloiber
et al. [47], including a set of 2D visualizations that can be placed
freely in the AR environment. Furthermore, in comparison to VR
systems such as [38, 47], using Augmented Reality allows us to
preserve the often important real-world context of a wide range
of AR and multi-display environments. A more detailed analysis
of the differences between AR, VR, and desktop-based interaction
analysis systems can be found in Table 2.

3 ANALYSIS OF SPATIO-TEMPORAL USER
INTERACTION

In this section we examine the specific research questions and
requirements for the in-situ visual analysis of spatial user interac-
tion in more detail and report on the data, tasks, and visualization
techniques used in prior work. Based on this, we then describe
requirements for the mixed reality analysis of spatio-temporal user
interaction.

3.1 Use Cases and Analysis of Existing Systems
During user studies in novel, immersive, or multi-display environ-
ments, researchers capture a lot of heterogeneous temporal and
spatial user-based data. This includes users’ movements, logged
interaction events or sequences of performed interactions, and the
usage of interactive surfaces, including touch and pen interaction.
Examples for such setups in the domain of Information Visualiza-
tion include the visual data analysis on a large, interactive display
wall [4, 48] and AR visualizations [13, 41, 52]. In examining their
systems, researchers are often interested in varying spatial and
time-related effects and events. Their observed or identified behav-
ioral patterns have an impact on the design of user interfaces (UI)
and the arrangement or use of technical equipment and devices.
For instance, possible research interests include:
Utilization of space: Howmuch did the users have to walk around
for the examined tasks? Where in space are interactions performed
and how large are spatial interaction volumes? This influences the
general arrangement and setup of interactive environments as well
as technical decisions about tracking volume or resolution.
Interaction on and around surfaces: Where do users touch an in-
teractive display? Can we identify specific zones? Does interaction
differ between displays, e.g., due to size and arrangement? These
questions impact the UI design (placement of UI objects/application
parts, user-oriented menu parts) and the use of technical equipment,
e.g., display arrangement.
Social interaction between users: What are locomotion and
movement paths in multi-user systems? Is there any interference
between users? Can we detect proxemic zones [34]? This has an
impact on workflows and the application of supporting tools.
Awareness of collaborators’ actions: How did users spatially
relate to each other? Could the collaborators and their actions be

Table 1: Overview of reviewed papers and most important
supported data types and visualizations.
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Study Embodied Interaction [4] x x x x x x
Social Diffusion Patterns [7] x x x x x x x
EagleView [8] x x x x x x x x
PAMOCAT [9] x x x x x x x x
GhostAR [16] x x x x

VU-Flow [19] x x x x x x
Social Interaction [23] x2 x2 x x x x
HouseFly [24] x x x x x x
Spat. User Behavior in Games [25] x x x
Study Is Moving Improving? [39] x x x x x x

Study Mouse vs. Touch [40] x x x x x x x
Fly with the flock [46] x x3 x x x x
IA of User Motion in VR [47] x x x4 x x
Study Classification Task [51] x x x x x
MR Remote GeoSpatial Vis [52] x x x

EXCITE [53] x x x x x x
VICPAM [57] x x x x
MRAT [60] x x x x x x x x x
VEEVVIE [61] x x x x x
3D Attention Volumes [62] x x x x x x

Study Tabletop Territoriality [65] x x2 x x x x
Browsing Videos [69] x x3 x x x x
VisTACO [71] x x x x
Stacked-based Trajectory [72] x x x x x x x
GIAnT [74] x x x x x x x x x x

1 e.g., metrics, tables, barcharts, boxplots
2 data from annotated video
3 orientation data derived from tracked points [46] or 2D video [69]
4 teleportation events

perceived? How closely did the users work together? These ques-
tions impact the UI design for collaborative tools and workflows,
suggest suitable interaction modalities, and inform about possible
(social) conflicts.

For further analysis, we examined 25 research papers from vari-
ous fields dealing with spatial analysis, e.g., mixed reality, proxemic
interaction [34], computer games analysis, and video surveillance.
This is not a single, confined field of research, as such it is impossi-
ble to cover all relevant papers. Instead, our goal was to provide a
good cross section of relevant research from different areas. To this
end, we took a sample of papers, drawn from major conferences
such as ACM CHI, IEEE VIS, or ACM UIST, smaller specialized
conferences such as ACM ISS, as well as papers cited by them.
The selected papers cover both toolkits (e.g., [7, 8, 47, 60]) as well
as studies of specific aspects (e.g., [39, 51, 65]) or use cases (e.g.,
[25, 46, 52]) for the analysis of spatial data. Although related to
spatial data, we do not consider classic GeoVis in depth, as it is
typically concerned with larger scales, nor do we consider general
visualization frameworks that do not specifically support spatial in-
teraction analysis. We were interested in the typical analysis tasks,
the data, and which visualizations are used for the analysis. For an
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overview of the papers and some of the findings discussed below,
see Table 1.

In general, most of the systems are desktop based, with only few
supporting an in-situ analysis (e.g., [16, 46, 47, 52, 60]). All exam-
ined systems allow for general exploration of spatial interaction
or movement data, aiming at understanding locomotion or usage
patterns. Many also support filtering (e.g., [57, 71]) or querying
(e.g., [8, 53]). Some systems (e.g., [19, 24, 47, 61]) specifically sup-
port comparing movement data from multiple entities. Based on
this and an overview in [10], we believe that we need at least to
support the following typical analysis tasks: data and view specifi-
cation tasks (i.e., encode/visualize, filter, derive, reconfigure), view
manipulation tasks (i.e., select, navigate/explore, organize), and
process/provenance tasks (i.e., annotate).

The data usually consists of positions and orientations (e.g.,
from users and mobile devices), sometimes with added trajectory
parameters such as speed [9, 19, 46, 47] or tortuosity [72]. This
tracking data was usually recorded as 2D or 3D positions and their
orientation, if possible, based on the used tracking or capture system.
In addition, and when applicable, event data is also visualized,
including study data such as task completion times, information
about user activities (e.g., user touches, application events), and
speech/text. Event data can be very heterogeneous, like occurrences
of an event (e.g., task started or finished), points (e.g., touches on
display surface), or 2D vectors (e.g., a touch trail). Most of the data
is recorded in a temporal sequence with timestamps. Many of the
systems also use video recordings, for example to extract position
information [23, 24, 69] or activities [65], as well as to support the
analysis process later on (e.g., [8, 24, 40, 57, 74]).

In the examined systems, the following visualization techniques
are used to analyze the captured data: 2D visualizations typically in-
clude simple heatmaps (e.g., [8, 19, 25, 61, 74]), 2D trajectories/paths
(e.g., [19, 61, 71, 72]), and scatterplots (e.g., [7, 60, 74]) of positional
data. In some cases, flow maps [7, 19] or visualizations of viewing
directions [8, 74] are used. Usually, some (event) timeline visual-
ization is also available (e.g., [57, 60, 71, 74]). These visualizations
are sometimes combined with abstract visualizations [61, 72, 74]
such as line charts, parallel coordinate plots, or bar charts. Only a
few systems support 3D visualizations at all. If so, they show entity
positions (and sometimes orientations) [9, 16, 47, 60], 3D trajecto-
ries [24, 46, 47, 69, 72], or 3D density maps [7, 24, 62]. Sometimes,
time instead of height is mapped to the vertical axis, typically for
space-time-trajectories.

3.2 Requirements
From the above findings, we conclude that a clever combination
of basic 2D and 3D visualizations in an immersive, in-situ environ-
ment could help to support a range of basic visual analysis tasks. In
the following, we list functional requirements derived from these
findings. We also briefly explain how these requirements may be
addressed in a system such as MIRIA by suggesting initial visual-
ization and interaction concepts.

(R1) Visualization of Position & Movement Data: Among
the most important data when studying user behavior in immersive
or multi-display environments are the users’ positions and move-
ments over time. Here we have to consider movement trajectories

of individual users, areas where people stand, and their viewing or
gaze direction.

Based on the literature, we propose to use 3D plots of space-
time trajectories to visualize tracked object and user movement
paths (Figure 2, 2). Directly visualizing the spatial object position
over time in 3D allows the analysts to see the data in relation to
its context and helps to show movement patterns. The current
time step in the data should be marked (e.g., with a simple glyph
or a visualization of a user and their hands, as in [47]). Further
attributes of the object can bemapped on color or line thickness (e.g.,
movement speed, see Figure 4, left). With all of these approaches,
the complexity of the visualization is a tradeoff between the amount
of information that can be encoded and the resulting level of visual
clutter.

(R2) Visualization of Event Data: In addition to the spatial
tracking data, event-based data is also typically recorded during a
user session. This data includes user interactions (like touch, pen,
speech, or other input events) and application events (like mode
switches or task completions), which are useful for pattern obser-
vation and identification. Order and co-occurrence of these events
is often crucial for the data analysis, showing possible patterns and
dependencies.

Similar to classic tools, we propose to present such events in a
timeline (Figure 2, 6), with time being represented on the horizontal
axis and events being shown on the vertical axis (e.g., as glyphs
or sorted stacked bands). However, not only the temporal aspects
of events are important, but also where they happen. In addition,
we suggest to also show these events in-situ, indicating location
and orientation of interaction events (e.g., with 3D markers, as in
[60]). Thus, the analyst can explore relations between preferred
interaction distances, how the physical environment affects user
interaction, and how the spatial arrangement of devices influences
interaction locations.

Where interaction events are performed on surfaces of interac-
tive displays, their position on that surface is obviously relevant
for data analysis. We propose to show these events with its two-
dimensional relation (e.g., as scatterplots).

(R3) Visualization of Study Context & Stimuli:We believe
that providing as much context of a user study as possible, including
information about the study environment, tasks, or stimuli, is an
important requirement for its analysis. Analysts often use videos
or images to document the study setup and application state and to
track which user actions happened when and why during the study.
This data can consist of single snapshots (e.g., screenshots or photos)
or videos. We propose to show video recordings or images in-situ,
freely positioned in the environment, e.g., on a wall, to prevent
occlusion of other data. For, e.g., screencasts, we suggest coupling
them to the actual displays used during the recording. In the case
of mobile devices, this means that the video could dynamically
move with the virtual device representation during playback; on
stationary displays, the screencast can be shown as an overlay.
Additional options such as time-lapse or image strips are helpful, so
that the analyst can quickly navigate to interesting points in time.

Furthermore, 3D models can be used in the in-situ analysis to
show important virtual content of the original study application,
e.g., visualizing its tasks or original data. They also allow to ac-
curately reconstruct the study environment in cases where the
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location has changed (e.g., if furniture or study equipment has been
removed, see Figure 5).

(R4) Filtering: Filtering is an essential part of the analysis pro-
cess for evaluating and comparing data. Accordingly, it should be
supported on multiple levels. At its most basic level, analysts should
be able to show only data of selected sessions and study conditions.
Then, further filtering can be carried out by choosing which tracked
objects or users should be shown. In addition, time-based filtering is
vital: the analyst specifies a certain time period in the visualizations
to analyze in detail and discuss it with their collaborators.

Finally, we propose to also support location-based filtering. The
analyst may want to analyze actions in detail that were performed
on specific locations. For example, they may select all data points in
their vicinity. In practice, the mentioned filtering approaches may
be combined, but require sufficient verbal communication between
the collaboration partners during the analysis process.

(R5) Annotations: Annotations are an important part of vi-
sual data analysis. In HCI studies, a typical task is video coding,
where analysts label observed situations or behavior. Therefore, we
propose that annotations and tagging should be supported by an
in-situ analysis tool, e.g., by placing notes in space. In addition, user-
defined tags may be used to filter and cluster specific observations
or to highlight them during the analysis. Furthermore, annotations
could not only be coupled to a point in time but also to specific
locations. Finally, import and export functionality for such tags and
annotations helps analysts to transition between in-situ analysis
and classic desktop setups.

(R6) Flexibility and User Preferences: For the in-situ mixed
reality analysis that we aim to support with MIRIA, the placement
of the visualizations must be consistent with the original location
where the interaction was performed by the users during the study.
Thus, the analysts need to be able to manually rearrange the ori-
gin of the virtual scene in the application, registering it with the
coordinate space of the recorded data. Accordingly, the visualiza-
tions of interactions on surfaces (e.g., scatterplots of touches, 2D
trajectories of mouse traces, image planes of screencasts) should be
virtually projected onto the physical displays (or their virtual 3D
representatives) in space (Figure 2, 6). Visualizations with clustered
or aggregated data (e.g., heatmaps of visited positions) should be
placed close to the visualization of spatial data, e.g., on the floor for
trajectories (Figure 2, 4). However, a suitable placement of visualiza-
tions depends on the investigated HCI study and its recorded data,
which can vary between studies (for examples, see section 5). We
suggest that an initial configuration may be automatically inferred
from the recorded data, but we propose to also support configu-
ration files for initial setups and to allow manual rearrangement
during runtime.

4 THE MIRIA TOOLKIT
Based on the requirements and informed by the literature review
and our own experiences in building and evaluating mixed reality
and multi-display environments, we propose a concept to facilitate
the visual analysis of spatio-temporal user interaction data. In the
following, we first describe this concept in more detail. Afterwards,
we present the implementation of our MIRIA toolkit, describing

the technical setup, the MIRIA pipeline (e.g., data import, data pro-
cessing, and data exploration), and the implemented visualization
and interaction concepts with respect to the listed requirements.

Figure 2: The MIRIA concept. 1: Co-located, in-situ analysis
of spatial interaction data by multiple users; 2: 3D trajecto-
ries of logged tracking time-series; 3: 3D objects, here tablets,
placed according to the currently selected point in time; 4:
2D view containers can be placed freely and show visualiza-
tions such as heatmaps or point plots; 5: 2D visualizations
can be combined, here a heatmap and a plot of the current
tablet positions; 6: 2D views can also show a timeline, images,
or videos and can even be attached to physical objects. AR
content is colored blue, real objects gray.

4.1 General Concept
With MIRIA, we aim to enable the collaborative exploration and
analysis of study data by co-located analysts in mixed reality (Fig-
ure 2, 1). While we also recognize the importance of VR systems for
Immersive Analytics, we specifically focus on the visual analysis of
data from studies in AR or multi-display environments, thus explic-
itly targeting environments with physical real-world context. For
the general setup, we use HMDs for an immersive AR experience,
supporting in-situ analysis (Figure 2). In our analysis toolkit, we
combine both 3D and 2D visualizations in a single mixed reality
environment. This allows us to use the advantages of visual cues
such as stereoscopy or motion to improve perception of spatial 3D
data (Figure 2, 2 & 3). At the same time, 2D views (Figure 2, 4-6) are
used to either visualize natively two-dimensional data (e.g., touches
on an interactive surface) or 2D projections of 3D data (e.g., user
positions on the floor).

The central paradigm of our approach is to enable an in-situ
analysis. We support this in several ways: First, by choosing AR
over VR technology, we make it possible to perceive both the data
and the originally used, physical environment, blended and simul-
taneously. Second, we support embedding 3D models of scene ge-
ometry that is not available during analysis time but was part of
the environment when the data was captured. Examples may be as
simple as tables or chairs but could also include special equipment
or even virtual content presented to the participants in an AR study.
With this, we address that lab settings can change over time and
original locations might even become completely inaccessible for
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the analysis phase. Third, 2D visualizations take the form of virtual,
rectangular containers. These view containers can be placed in the
scene. We do not only support free placement but also allow to
attach views to relevant surfaces or objects in the environment
(Figure 2, 4-6). As mentioned above, this enables us, e.g., to visual-
ize movement on the ground or touch positions on a display wall,
similar to click maps used in web analytics. This way, we support
relating the data to the devices or locations that they are concep-
tually linked to. This is not limited to a static placement. Instead,
visualizations can also be coupled to the tracked, dynamic location
of a mobile device that was moved during the study, showing, e.g.,
how touch behavior changed depending on the device’s location.

As video analysis is often used in classic systems, we also propose
to support the playback of video recordings and displaying pictures
in MIRIA. Footage of any classical observation camera can be placed
in the room, showcasing details that may not be apparent from the
more abstract data logs.More importantly, we expand on this by also
supporting display recordings or screenshots. Here, again, we see
added value in showing such recordings of user and system behavior
in-situ, at the (even dynamic) position of the actual displays used
during the recording. Finally, we consider support for multiple co-
located analysts to be an important corner stone of our concepts.
In contrast to most existing systems, we thus support analysis in
a shared mixed reality space, e.g., allowing experts from different
domains to work together.

4.2 Implementation Overview
We implemented most parts of our MIRIA concept in a working sys-
tem.2 This implementation serves two goals: First, it demonstrates
the technical feasibility of our concepts with today’s technology.
Second, the MIRIA toolkit can be used by, e.g., HCI researchers for
the visual exploration and analysis of user interaction data.

The MIRIA toolkit targets AR headsets, specifically the Microsoft
HoloLens v2, and uses the Unity 3D engine and Microsoft’s Mixed
Reality Toolkit for Unity. We developed MIRIA to be multi-user
capable, with one HoloLens device acting as a server that all other
clients connect to. Thus, no further infrastructure is necessary. This
allows us to use MIRIA in various environments with only little
needed setup.

Our framework supports different virtual views placed in the AR
environment: The visualization views, which visualize the recorded
data sets (e.g., 3D trajectory view, heatmap) and the application
views, which host the user interface for system control and visual-
ization settings, and provide information about the currently loaded
study data.

The underlying visualization workflow of MIRIA is depicted in
Figure 3: First, the study data is imported, with additional meta
data being stored in a configuration file. After import, the data is
preprocessed. It is then displayed in visualization views placed in
space. The analysts can then use the additional application views
to filter the data or reconfigure the visualizations.

2Source available at https://github.com/imldresden/miria, see also the project website
at https://imld.de/miria for more details.

Figure 3: MIRIA pipeline. A configuration file links to the log
files. After import, the data is filtered and then shown in 2D
and 3D visualization views that are controlled via application
views.

4.3 Metadata Description & Data Import
To support a wide range of applications and addressing requirement
R6, we took special care to make MIRIA as flexible as possible re-
garding study data and setups. The captured tracking and event data
(e.g., timestamps, spatial user & device positions, and interactions
such as touch events) is imported from CSV files. A configuration
XML file provides all relevant metadata about a study. It contains
the definitions of study conditions and sessions, information about
tracked and static scene entities such as type or id, the axes defi-
nitions of the original coordinate system, initial positions for 2D
views, and defines the mapping between the defined objects and
their logged data in the CSV files. Additionally, recorded video data
and pictures can also be loaded, and the XML configuration file
specifies the scene positions of these media objects. This allows
analysts to display videos where they were originally taken, such
as a screencast of a mobile device used during the study.

At startup of the application, all XML files, representing one
study each, are parsed. We then show a list of all studies in the
application, allowing users to select and load a study of their choice.
Currently, all files are kept on the AR headsets and are loaded
locally. In principle, however, they could also be streamed from a
server.

4.4 Data Processing
In order to cope with the memory and rendering limitations of
the HoloLens, a data preprocessing is used after the import step to
filter the displayed data. The specific preprocessing is visualization-
dependent but in general, we currently use two strategies: First, we
use temporal downsampling to reduce the often high-frequency
tracking data down to 15 Hz. Second, we remove tracking points
with a very small distance (< 3 cm) to the last point, which are,
in our experience, likely to be noise in the tracking. With these
strategies and with the data used in our studies, we can typically
reduce the number of data points to be drawn by about 90%. These
values can easily be adapted depending on the use cases and future
technology.

4.5 Visualization Views
Currently, our MIRIA implementation supports 3D trajectory plots,
3D trails, 2D heatmaps, 2D scatterplots, 2D point plots, media views,
and a 2D event timeline. The 3D visualizations are directly rendered
into the AR environment, while all 2D visualizations are drawn on
rectangular, planar surfaces situated in 3D space. The size, position,
and orientation of these containers or 2D views can be configured
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Figure 4: Screenshots of MIRIA in Unity. Left: 3D trajectories of several users, colored to encode speed. The event timeline in the
playback panel is also visible. Center: 3D trajectories of multiple users, a 2D scatterplot of touch positions, and a 2D heatmap of
user positions projected to the floor. Right: 3D trail visualization of multiple tablets, tracked above a table. The study control
panel is also visible.

through the meta data. Thus, analysts can easily place them accord-
ing to the study setup or depending on the planned analysis task
(Figure 4). During runtime, the 2D views can also be repositioned by
simply dragging and moving them. Each 2D view can hold multiple
different 2D visualizations at the same time, allowing analysts to
combine several visualizations. For example, a 2D view placed on
the floor may display both a heatmap and the current 2D positions
of the tracked objects simultaneously, giving an overview of the
data’s distribution, as well as showing current positions (Figure 4,
right).

4.5.1 3D Visualizations. In our current MIRIA implementation,
3D trajectories (Figure 4, left & center) are used to visualize spatial
movements of tracked objects (e.g., subjects or mobile devices),
addressing requirement R1. We use connected, three-dimensional
tube segments to visualize the objects’ movement over time and
employ simple shading and shadows to support the users’ depth
perception. The trajectories are color-coded to match the object’s
colors defined in the configuration file. In our current implementa-
tion, if multiple sessions are shown at the same time, the trajectories
and markers are differentiated by manipulating the color saturation
of each visualized session (Figure 2, 2). Alternatively, as the speed
of tracked objects may be of special interest, we offer the option
to encode this speed directly on the trajectories (Figure 4, left). For
this, we currently use the Viridis colormap [68]. Using the corre-
sponding settings button, users can open a configuration menu
where they can select which trajectories to show and, for each of
them, whether local speed or object color should be displayed (R4,
R5). As an alternative to showing the complete paths of tracked
objects, we also implemented 3D trails, which only show the last
few seconds from the currently selected time code (Figure 4, right).
Apart from this dynamic, time-based filtering, they are functionally
equivalent to the 3D trajectories described above.

The current data point on a trajectory or trail can be marked
by a 3D object (e.g., a tablet or stylized HoloLens), definable in the
configuration file. These 3D models can be activated or deactivated
independently of the trajectories. In addition to the use as dynamic
position markers (R1), we also support an arbitrary number of
static objects. As mentioned in section 4.1, these models can serve
to recreate changed parts in the environment (see, e.g., the virtual

table in Figure 5) or show additional context about the study tasks
(R3).

4.5.2 2D Visualizations. The current positions of tracked objects
or of interaction events in relation to a 2D plane (e.g., touches on a
display) are visualized with a 2D point plot (Figure 2, 2). It shows the
positions as small, colored circles and lends itself to be combined
with, e.g., 3D trajectories or a heatmap.

We also implemented 2D scatterplots to visualize the entirety of
such interaction events in two spatial dimensions (R2). For instance,
we use scatterplots to show all touch events up to the current point
in time, color-encoded per user (Figure 6, left & center). Often, there
is no further semantic information, e.g., differentiating a touch
down/up, a drag or hold action. Therefore, we show all events
as single, unconnected points. Consequently, no continuous drag
action is visualized in the current implementation.

In MIRIA we also support 2D heatmaps (Figure 4, center). They
visualize the frequency and density of positions (e.g., touches on
an interactive surface, users’ position in front or next to a display)
in an aggregated form. To render a heatmap, we project all sample
or event positions to the target plane where the view is located
and accumulate their number per grid cell. The values are then
normalized, mapped to color values, and applied to the correspond-
ing texel in the heatmap texture. To improve visual quality, we
also apply a moderate gaussian blur. For the color mapping, we
use the object color for hue and saturation and the sample density
for the value in the HSV color space. This results in a series of
differently toned monochromatic colormaps that we combine by
alpha blending, very similar to the process used in [74].

In an event timeline, we show the time and duration of events
(R2). The objects for which events are available are stacked verti-
cally, the current state/event is color-coded with time being mapped
to the horizontal axis (Figure 4, left). In addition to the option of
displaying it on any 2D view, we currently show this timeline visu-
alization directly on the playback panel (compare 4.6.2).

Finally, media views are used to show video and image data
captured during the study, allowing us to present the analysts
additional information about study stimuli or application contexts
(R3). Like the other 2D visualizations, media views can be assigned
to any 2D view. These can be coupled to any static scene object (e.g.,
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corresponding to a video camera position during the user study or
to a fixed wall-display) or tracked, movable object (e.g., a tablet)
(R6). As mentioned earlier, the media files are referenced in the
XML file. Here, the analysts can also define the time offset to the
logging data and which part of a video should be shown.

4.6 System & Timeline Control
After having introduced the various visualization views of MIRIA,
we describe how users can position the virtual content in the phys-
ical environment, the different application views used to control
the system, and how we currently support filtering of the data.

4.6.1 Data Alignment. When the first user creates an analysis ses-
sion, the scene’s origin is placed near them and visualized with a
simple 3D marker. This position is also shared with all other ana-
lysts joining the session. However, at any time, users can move and
rotate the scene simply by grabbing it, thus allowing them to match
the underlying coordinate system of the logged tracking data. This
cannot be automated, because, even for one given environment, the
coordinate system could vary considerably between studies.

4.6.2 Application Views. The application views include all views
that are used to setup and control the MIRIA application and the
analysis process. For brevity, we only cover the two most important
views here, the study control panel and the playback panel (Figure 4,
left & right). Others include a session panel to join an existing
analysis session or the settings panels, mentioned earlier, where
visualizations can be configured (R6) on the fly.

The study control panel shows the available user studies based on
the pre-loaded XML configuration files (see section 4.3) and allows
loading the desired user study data. Furthermore, after loading a
study, it shows information like the currently selected study condi-
tions and participant. It also allows the users to activate or deacti-
vate the 3D visualizations (2D visualizations are directly controlled
from their 2D view panels) and to switch interactively between
sessions/participants and conditions in the current data set.

A central part of our MIRIA tool is the playback panel (Figure 4,
left). Similar to a media player’s control interface, it shows the
current point in time, also marked on a progress bar, and the total
duration of the selected session. Buttons allow analysts to start and
stop playback of the time-dependent data. As a default, playback
happens at real time, but we also support playback speeds between
0.25- and 8-times normal speed.We also allow users to quickly jump
to other points in time, either by dragging the slider or clicking
anywhere on the progress bar.

If multiple sessions are shown at once, then all data is aligned at
the first samples’ time codes. All time-dependent, non-aggregated
views are synchronized. This means, videos or screencasts, if avail-
able for the session, are also played synchronously. As mentioned
above, we also show the event timeline in this panel, aligned with
the progress bar.

4.6.3 Filtering. Our current MIRIA implementation supports sev-
eral methods to filter the visualized data, addressing requirement
R4. First, users can select individual or all sessions and conditions
of a study for visualization. We also support simple filtering of data
objects by enabling or disabling them in the settings panel of any
visualization. Furthermore, we support a time-based filtering of

data objects. To this end, the analyst can set an in and out marker
in the playback panel to define the desired time period. Only sam-
ples within this time period are considered for visualization. The
filtering is applied to all currently used visualizations and all ob-
jects/entities. Support for filtering based on location, e.g., close to
an object or inside a defined volume, is planned for later versions.

4.6.4 Collaboration & Annotations. Our decision for a co-located,
in-situ AR system instead of VR or remote collaboration means that
the analysis of study data by multiple users is naturally supported
by verbal communication and non-verbal cues such as pointing.
Thus, we did not include specific software features to support collab-
oration. However, we found that live information about the tracking
and synchronization status between the devices can help to ensure
users that the digital content is correctly placed. Therefore, we
added a small indicator that marks the current position and orien-
tation of each user. Any tracking error would lead this indicator
to freeze or be at an offset from its user’s position. In our current
MIRIA implementation, we provide some initial support for tags or
annotations (R5). Users can place markers in space, indicating, e.g.,
interesting points in the data set. These markers are synchronized
between users.

Besides extending the annotation possibilities, we plan to add
other features later. In particular, we would also like to include
advanced filtering methods, such as spatial filtering for trajectories
(e.g., [36]) or filtering by example [43]. The current implementation
can support the visual analysis of study data andwe believe it clearly
shows the feasibility of our concepts. In the next section, we thus
describe how experts can use the different MIRIA visualizations
during an in-situ data analysis.

5 ANALYSIS WORKFLOWWITH PRACTICAL
EXAMPLES AND EXPERT FEEDBACK

As a preliminary evaluation and to illustrate the usefulness of our
approach for real-world analysis tasks, we used several example
use cases with authentic data and combined different validation
approaches: Our implementation serves as a technical validation
of our concepts and shows that typical HCI study data can be
visualized with MIRIA on current AR devices. Additionally, expert
walkthroughs illustrate the use of MIRIA with practical examples
and provided us with helpful insights and feedback. Due to the
ongoing pandemic, a full evaluation with outside participants was
unfortunately not possible at this time. Instead, we invited four
colleagues (three male, one female) from our institute who are HCI
or visualization experts, are familiar with some of the example user
studies, but did not directly work on the MIRIA implementation
or this paper. With each of these experts (E1-E4), we performed a
collaborative in-situ data analysis as a guided walkthrough (about
one hour per session), in which one of the authors explained the
software and helped to control it. For these expert feedback sessions,
we used two user studies from previously published papers [12, 73],
which are described in detailed below. Furthermore, we briefly
report on walkthroughs of two additional example studies by two of
the authors, highlighting only some key points from these scenarios.
Each practical study example had a different focus on observing the
use of spatial interaction or physical space during interaction. We
have chosen these HCI study examples to show the diverse aspects
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Figure 5: Application cases presented in section 5. Left: In the spatial interaction for 3D visualization use case, the baseline
condition "touch camera", when visualized in 3D space, shows larger, faster movements impossible with a camera bound to a
physical prop. Center: The same task, with the camera spatially controlled by moving a tablet. Right: In the collaboration on
multiple displays use case, tracking errors in the analyzed data were visible. MIRIA helped to attribute them to problems with
the tracking markers.

of our toolkit in the visual exploration of data from single user 3D
data analysis to collaborative multiplayer games. In the following,
we present these walkthroughs, summarize the expert feedback,
and finish with a discussion of our MIRIA toolkit.

5.1 Tablet-based Spatial Interaction for 3D
Visualizations

Our first example is a user study by Büschel et al. [12] about the
use of spatial interaction for the exploration of 3D visualizations.
Specifically, the paper compares the performance of users exploring
an AR visualization virtually placed on a real table with a tracked
tablet, where the baseline condition was a classic mobile 3D visu-
alization with touch controls on a tablet. In both cases, the data
consists of the 3D position and the forward vector of the virtual
camera (view direction) logged in the original application. In case
of the spatial interaction condition, this virtual camera corresponds
to the tracking data of the tablet, obtained from an infrared tracking
system. From the study data, we chose a subset of eleven subjects
with two conditions (spatial and touch camera) and one task (the
navigation task described in [12]), resulting in more than 155,000
samples.

To simulate the physical table present during the original study,
we included a simple 3D mesh as a static scene object in the con-
figuration file. Upon loading the study data, we manually adjusted
the position of the scene, so that the virtual table was placed on
the ground. As our experts wanted to get a better overview of all
the data, they opted to show all subjects’ data at the same time
(Figure 5, left & center). We then demonstrated the available visual-
izations. For example, we assigned both a position heatmap and a
2D point plot to the 2D view, allowing the experts to better perceive
the current tablet position in relation to its distribution over the
whole task duration. For instance, two experts (E3, E4) mentioned
that the heatmap showed that all study subjects started at one po-
sition and some subjects walked around the table. The 2D view
was partially blocked by the table, which the experts then opted
to turn on and off, depending on what visualization they focused
on. The 3D trajectories allowed the experts to clearly see the typical
patterns of the touch-controlled camera in the data (e.g., trajectories
reaching the ceiling were mentioned by E2 and E3). In the original

study paper [12], the importance of visualizing such interaction
data in-situ was already stressed, with the physical surroundings
putting the data into perspective. Consequently, the experts (E2-E4)
could immediately see that the typical distance of the camera to
the table in this mode was larger than would be possible in the AR
condition of the study (Figure 5, left). In contrast, the trajectories
in the AR condition were more densely distributed (Figure 5, cen-
ter). In addition, color-encoding speed also showed that camera
movements were faster in the touch condition. During playback, it
became clear that, similar to the touch condition, participants were
trying to get an overview by taking a step back and, presumably
after finding the target location, quickly focused on that spot.

5.2 Multi-player Game
For the second example, we wanted to especially focus on interac-
tion data by multiple users. We chose an observation study by von
Zadow et al. [73] about users’ movement and awareness during a
fast-paced, collaborative multi-player game on a wall-sized display.
In this game, four players had to guide miners lost in a cave back
home, under time pressure and by clever use of individual tools
on the wall’s surface. For each of the players, the available data
consists of the tracking logs (head position and orientation, again
captured by an IR tracking system), the assigned tool, and touch
positions on the display wall. We limited ourselves to the data of
two of the groups, leading to ca. 9,800 touch positions and more
than 262,000 tracking samples.

We had access to the display wall used during the study [73],
allowing us to visualize and explore the study data with MIRIA in
an authentic environment. In addition, we showed a screenshot of
the game as an AR overlay on the display wall during analysis, pro-
viding a strong contextual cue, which would be hardly obtainable
in classic analysis tools (Figure 1 & Figure 6, left & center).

The amount of data in this use case led to visual clutter. MIRIA
allowed us to counteract this by filtering out the initial planning
phase during the analysis, concentrating on the actual gameplay,
and also by switching on and off trajectories as needed. In addition
to the 3D trajectories of the players, we chose to visualize their
touch positions on a 2D view placed directly on the display wall.
This enabled the experts to see touches during playback in the
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Figure 6: Further application cases presented in section 5. Left & center: In the multi-player game use case, players had to move
in front of a display wall, interacting with it by touch. Right: In the distant 3D pointing techniques use case, both a tablet and
the user were tracked in front of a display wall.

context of the game (see, e.g., the colored dots indicating a touch in
Figure 6, center). Here, one expert (E3) pointed out that they could
easily recognize which assigned game tool was used by the visual
behavior pattern. The game forces the players to interact with large
parts of the display wall. This is immediately visible in the data. By
looking at the touch positions on the wall and the corresponding
trajectories in the context of the physical environment, the experts
also found that players had to bend over or kneel in some cases, as
seen in the lower parts of the trajectories in Figure 1 and confirmed
in the recorded study videos. An observation that, without a sys-
tem such as MIRIA, may make a time-consuming video analysis
necessary. Visualizing the data over time with increased playback
speed, we also found that the players would work in very close
proximity but would also split up at times, confirming the findings
presented in [73]. Furthermore, the provided visualization and ap-
plication views of MIRIA helped our experts to verify the recorded
data. For instance, the event data view showed users’ actions up to
five minutes (the duration of a game level), but the 3D trajectory
view shows user movements up to ten minutes, because the users
were waiting for the next level to start (e.g., mentioned by E3). In
addition, MIRIA’s visualization of the trajectories in the environ-
ment revealed that for several minutes after the game ended, the
HMDs were resting on a table.

5.3 Further Application Examples
We also tested our concepts and implementation with additional
study data, briefly summarized in the following.

Collaboration onMultiple Displays. In this user study [32], groups
of three people were observed during a collaborative, co-located
web search task in a multi-display environment. We had access
to the tracking data of people’s positions and observation videos
for three sessions, with a session length of about 30 minutes. In
this case, there was a concrete analysis problem: an unexplained
error with parts of the recorded tracking data. In contrast to prior
systems, MIRIA’s in-situ analysis allowed us to check the line of
sight between the tracking cameras and the user positions along
the 3D trajectories. By using the AR visualization in combination
with the physical environment, we were thus able to confirm that
the tracking problem was not caused by occlusion of the tracking
cameras by the used large displays, but probably by problems with
themarkers on the caps used to track the participant (Figure 5, right).

In addition, during analysis setup, we were able to reconstruct
the general study arrangement of physical objects (a table, chairs,
mobile large displays) in the lab quickly and easily using the 3D
trajectories of several sessions and photos of the study as reference.
Furthermore, the easy switching between 3D trajectories and 3D
trails of individual subjects helped to have a closer look at short
data snippets and enabled us to easily pinpoint the brief phases of
tracking loss in the long session.

Distant 3D Pointing Techniques. In an unpublished in-house study,
several distant techniques for smartphone-based pointing at a dis-
play wall were examined (Figure 6, right). The data includes both
the tracked data for users as well as the mobile devices, allowing
us to visualize them together in one scene. By looking at the 2D
heatmap projected on the floor, we could see the global pattern of
"swarming out" from the starting location in each study trial. In
addition, the 3D trajectories also showed a preference for one of the
techniques to point from further afar. Finally, by showing the 3D
trails of both the users and the phones at the same time, the spatial
relation between user and phone became apparent, allowing to see,
e.g., how far away the users were holding the phone, whether they
tilted it, and how user behavior changed when moving closer to
the wall.

5.4 Expert Feedback and Tool Improvements
The presented in-situ data analysis with MIRIA was judged pos-
itively by all of our expert participants (E1-E4). All experts were
highly interested and engaged during the sessions, the physical
navigation was perceived helpful (E2, E3, E4) and as working well
during data exploration (E2, E3). The experts mentioned the play-
back mode as most useful from the analysis point of view. A few
of them also positively mentioned setting the playback speed (E1,
E3, E4). In addition to 3D trajectories, showing the 3D trails for
several sessions at once was pointed out as helpful (E3). All experts
appreciated the efforts to visualize the study context (e.g., screen-
casts on physical displays, captured videos) for the data analysis
(E1-E4). Furthermore, in some cases the 3D trajectory visualiza-
tion helped to mentally reconstruct the physical setup of the study
environment.

The expert feedback also addressed a few critical points, e.g.,
the limited field of view (E2, E4) and the fatigue when wearing the
HoloLens over a longer period was noted (E2). Better support for
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annotations and the configuration of analysis sessions for reuse was
also commented on (E3). The simple annotation feature mentioned
in section 4.6.4 is a first step in this direction. Furthermore, experts
requested the possibility to interactively synchronize the timelines
of multiple sessions (E4) or to support jump marks (E3). To improve
the 3D trajectory visualization, experts suggested to label the tra-
jectories, as well as the possibility to configure the color-encoded
attribute (E1, E3, E4).

5.5 Discussion & Limitations
The previous example studies show the versatility of our current
implementation and the MIRIA concept in general. In particular,
the variety of the studies underlines how central spatial aspects of
user interaction are for many different immersive and multi-display
applications; and thus, how important the visual exploration of
this inherently three-dimensional data is. In several cases, the in-
situ analysis, directly in the original environment, allowed analysts
get a better sense of the scale of movement paths or their relation
to physical objects. This was also supported by the stereoscopic
rendering and would have been harder with traditional tools (e.g.,
[8, 53, 74]). In this regard, the ease of deployment and flexibility of
MIRIA in various in-door environments, not needing a server or
any room instrumentation, is beneficial. Manual calibration of the
visualization in respect to the physical space turned out to be fast
and precise enough for our use case.

Furthermore, being able towork collaboratively in the same space
made for an engaging experience and supported us in looking at
different areas at the same time. While this could potentially also
be done in, e.g., a web-based analysis system, the immediate and
natural exchange about each user’s current position and region of
interest proved helpful. We would like to point out that the high
level of user engagement that we typically saw, could make a novel
system like ours also interesting for reporting findings to others or
for in-situ data story telling.

Besides the presented features and demonstrated applicability of
our toolkit, it has also some limitations. One issue is that, despite
its advantages, being “in the data” at times prevents an outside-in
view that may be needed to get an initial overview of the data. We
propose to allow analysts to temporarily scale down the whole AR
scene. This way, an immersive visual analysis of the 3D interaction
data would still be possible, while seamlessly switching between an
in-situ view aligned with the physical environment and an overview
that is easily accessible and could even be virtually placed on, e.g.,
a table. We discussed this with the invited experts and conclude
that this strategy could be useful depending on the use cases. In
addition, while the technical setup of our toolkit is easy, manu-
ally writing a configuration file for a dataset can be cumbersome,
due to the flexibility of MIRIA. More configuration options in the
application itself could address this problem. We plan to include
these additions in future versions of the toolkit, together with the
other currently unimplemented features pointed out in section 4,
most notably extended annotation and filtering support. With such
features, more complex user interaction with the MIRIA toolkit will
be necessary, e.g., to specify filter parameters or input text. Here,
the additional use of a mobile device, as examined in, e.g., [11, 84]
may be promising for interface controls. Recently, Lilija et al. [50]

proposed a direct manipulation approach to navigate time in VR
recordings that might also be interesting for our use case.

On the technical side, MIRIA typically reaches the HoloLens 2
target frame rate of 60 fps with study data as used in our prelim-
inary evaluation. As mentioned above, these data sets had up to
several 100,000 samples (before any filtering in MIRIA) and repre-
sent diverse study logs of typical size and duration. However, the
performance of the hardware currently still limits both the amount
of data that can be shown while maintaining interactive framerates
as well as the rendering quality, especially when showing multiple
visualizations at once. In addition, perception issues such as color
fidelity and resolution have to be considered. Importantly, the nar-
row field of view can make it harder to get an overview of data
distributed over a larger area, forcing the user to move their head.
While such considerations are not in the scope of this paper, we
believe that the hardware limitations will continue to be addressed
by manufacturers in future iterations.

Several of the advantages and limitations of MIRIA mentioned
above are inherent to AR applications. Table 2 shows a brief com-
parison of MIRIA to similar systems and serves to highlight some
of the differences to VR and desktop-based solutions. Most impor-
tantly, AR systems such as MIRIA directly combine the physical
environment with virtual data representations and support face-to-
face communication, while VR systems make it easier to (re-)create
arbitrarily sized virtual environments. Thus, MIRIA is not meant to
replace existing systems but rather serves as an alternative specif-
ically designed for contexts that depend on physical artifacts or
environmental cues.

6 CONCLUSION & FUTUREWORK
In this paper, we presented MIRIA, a concept and exemplary toolkit
for the immersive visual analysis of spatial user interaction data. By
analyzing prior, related systems and based on our own experiences
in the field of human-computer interaction for mixed reality and
multi-display environments, we proposed a series of visualization
concepts for this novel type of analysis system. Our central idea
is to support researchers and practitioners by providing a mixed
reality solution for the in-situ visual analysis of interaction and
event data. In our approach, 3D views such as trajectories or trails
can be integrated with videos or images and 2D visualizations like
heatmaps, scatterplots, or event timelines, all of which are virtually
placed in the physical world, preserving valuable contextual and
environmental cues. We provided an overview of our current imple-
mentation, detailing both its general structure and the individual
visualizations implemented so far. Finally, we demonstrated the
usefulness of our approach in an initial evaluation. To this end,
we used a combination of expert feedback sessions and our own
walkthroughs to validate MIRIA in several real-world application
examples with real study data and presented their setups and find-
ings. In the future, we plan to investigate extensions of the current
interaction and visualization concepts, to continue developing the
MIRIA toolkit, and to further evaluate our system in a formal user
study. Among the planned additions are more powerful filtering
tools, a way to resume analysis sessions and export results, as well
as more specific tools to support higher level analysis goals, e.g.,
visualizing common interaction zones, lines of sight, and occlusion.
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Table 2: Comparison of MIRIA to selected systems as described in their publications. See also Table 1 for additional information
about the data and visualizations.

System Environment Analysis Use Case Advantages Disadvantages

MIRIA AR Interaction in AR & multi-display envi-
ronments, pre-recorded room-scale data,
supports collaboration by multiple ana-
lysts, also supports projected views for
2D visualizations

Support for wide range of immersive
and non-immersive analysis scenarios,
direct availability of physical artifacts
and environmental features, easy
face-to-face communication facilitates
co-located collaboration

Performance limited by available AR
hardware, access to original physical
environment important

MRAT [60] AR Interaction in AR environments, sup-
ports data recording in Unity apps, focus
on event data, uses additional tablet for
2D visualizations and filtering

IA of User Motion in VR [47] VR Interaction in VR environments, focus on
user motion

Higher rendering quality possible com-
pared to AR, flexibility due to purely vir-
tual environment

Recreation of real environments difficult,
collaboration can suffer fromHMDusage

GIAnT [74] Desktop Interaction in front of large display walls,
pre-recorded data, typically room-scale
data

Easy setup, high performance Non-immersive, limited flexibility, 2D vi-
sualizations only
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