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Figure 1: Exemplary Pearl visualizations for human movement data analysis based on Regions of Interest. (A) A combination

of 3D trajectories showing fine-grained movement recordings and the Approach View summarizing how humans approached

associated objects. (B) Superimposed 3D stacked bars embedded directly on the physical objects showing stay duration of two

visitor groups. (C) Flow View with two color-coded visitor groups presenting the trend of their movement transitions.
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ABSTRACT

This paper presents Pearl, a mixed-reality approach for the analy-
sis of human movement data in situ. As the physical environment
shapes human motion and behavior, the analysis of such motion
can benefit from the direct inclusion of the environment in the
analytical process. We present methods for exploring movement
data in relation to surrounding regions of interest, such as objects,
furniture, and architectural elements. We introduce concepts for
selecting and filtering data through direct interaction with the en-
vironment, and a suite of visualizations for revealing aggregated
and emergent spatial and temporal relations. More sophisticated
analysis is supported through complex queries comprising mul-
tiple regions of interest. To illustrate the potential of Pearl, we
developed an Augmented Reality-based prototype and conducted
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expert review sessions and scenario walkthroughs in a simulated
exhibition. Our contribution lays the foundation for leveraging the
physical environment in the in-situ analysis of movement data.
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• Human-centered computing → Mixed / augmented reality;
Visual analytics; Visualization techniques.
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1 INTRODUCTION

Analyzing human movement data can provide valuable insights
into movement behavior and spatial dynamics. Improvements in
the affordability and performance of motion-tracking systems al-
low increasing possibilities to capture and analyze human motion
behavior in various contexts [28]. However, due to its complex na-
ture, understanding movement data requires sophisticated tools for
visualization and analysis [20]. Researchers have proposed various
tools to support the analysis of human movement data in different
contexts, including understanding navigational behavior, room oc-
cupancy, and flow pattern of museum visitors [13, 38], exploring
spatial and group interaction with the environment [10, 70], and
analyzing human motion in sports [67] and dances [65].

Emerging mixed reality (MR) solutions provide new opportuni-
ties to explore motion data in the exact location where the data was
captured. MR systems, such as AvatAR [57] or MIRIA [11], enable
visualization and interactive exploration of movement data in the
original environment. These kinds of systems provide analysts with
awareness of the physical environment, providing context to the
motions and actions captured in the data. Moreover, using MR tech-
nology in the original space allows analysts to take the perspective
of involved humans and contextualize the initial situation.

Nevertheless, existing approaches usually focus on interacting
directly with the movement data and largely ignore the interplay
between human motion and the physical environment. For exam-
ple, solutions have been introduced that allow direct interaction
with movement data visualization (e.g., trajectories [32, 35]), with
the representation of involved humans (e.g., virtual avatars [57]),
or through an additional interface (e.g., tablets [35, 57] or tangi-
bles [66]). However, human motion, especially in indoor environ-
ments, is often, consciously or unconsciously, affected by the phys-
ical objects populating a space and their affordances. A physical
object might be an obstacle that has to be avoided to continue the
movement, such as a table in the middle of the room, or an object
of interest that is intentionally approached to interact with it, like a
whiteboard on the wall. Thus, physical objects and their surround-
ings restrict, shape, or elicit human behavior and motion to varying

extents. As such, they can serve as reference points for the analysis
of associated human motion and behavior.

In fact, several works have shown the potential of using physical
objects as references for movement data visualization, for instance,
to present human movement around physical objects (like inter-
active display [11, 57, 70]), or using virtual objects as references
to directly interact with the spatial recordings in virtual reality
(VR) [42]. However, to the best of our knowledge, no previous work
presented approaches to explore movement data in the original
real-world environment by referring to regions of interest (ROIs)
and providing visualization techniques from their perspective. As
the physical environment affects human movement, it is promising
to analyze movement data focusing on associated ROIs in the origi-
nal environment. ROIs can contain one or more physical objects as
referents from the original real-world environment, parts of them,
or together with the close-by environment. The ROIs can play the
role of lenses providing interaction and visualizations for movement
data from their viewpoint.

In this work, we propose Pearl, Physical Environment based
Augmented Reality Lenses (see Fig. 1). Pearl is an approach for
the in-situ exploration and analysis of human motion data using
the physical objects in the original space as referents. It provides
three functionalities: 1) Defining Lenses by selecting ROIs from
the physical environment for exploring human motion data, 2)
Query-based filtering the movement data based on the proximity
and temporal relation to the selected ROIs and building complex
queries using logical operations, and 3) Visualizing the movement
data as detailed (like 3D trajectories) and aggregated embedded
visualizations regarding the ROIs. In particular, aggregated visual-
izations provide a novel and unique way to visually summarize the
movement data among the ROIs in the environment. Moreover, we
designed and implemented a prototype of Pearl for Augmented
Reality (AR) head-mounted displays (HMDs), including a suite of
contextually embedded visualizations with different granularity. To
illustrate its potential, we prepared a simulated exhibition room,
collected spatial movement data, and designed several use-case sce-
narios. We conducted expert review sessions with domain experts
in the simulated exhibition, systematically analyzed the results, and
report the first insights of our approach.

In summary, our main contributions are the following:

(1) An immersive approach for the in-situ analysis of humanmo-
tion data focusing on leveraging the affordances of physical
objects as referents in the situated MR environment.

(2) Concepts for interactive querying and filtering human move-
ment data based on regions of interest and a suite of situated
visualizations for analyzing aggregated spatio-temporal data
related to the physical environment.

(3) A prototype implementation of our concept, as well as ex-
pert review sessions and scenario-based walkthroughs high-
lighting how our concept can be used to analyze human
movement data.
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Figure 2: A model describing movement data. (A) shows the three components of spatio-temporal information, as well as their

characteristics and relations [3, 54]. (B) highlights two specific Objects: the Referents and the Actors. The Referents differ

from general Objects, and more specifically from Actors, by only having a static spatial position that is constant over time

(temporal position). Thus, Referents have no trajectories.

2 BACKGROUND AND RELATEDWORK

Our work focuses on exploring and analyzing movement data using
AR and Immersive Analytics (IA) systems. Below, we outline the def-
inition of spatio-temporal data and describe different perspectives
of visual analysis, particularly indicating AR and IA systems.

2.1 Spatio-Temporal and Movement Data

Spatio-temporal data describes changes in space information over
time [3, 4]. Its datasets are primarily associated withmovement data,
describing the “changes of spatial positions of one or more moving

objects” [4]. Those objects can be inanimate, like drones [75], cars, or
other vehicles [27], or animate, like animals [34] or, more relevant to
this work, humans [11, 16, 80]. Besides space and time, such datasets
can contain further properties, also called thematic attributes [4],
for instance, the fuel level of a car or a person’s conversation [62].

In general, spatio-temporal data stores information of three com-
ponents: Where, When, and What, known as the triad scheme [54].
Those components can also be named as Space or Locations, Time,
and Objects, respectively (see Fig. 2A) [3, 54]. Analysts can build
relations from the elements of these components to answer a range
of questions about, for example, specific spatial configurations, pres-
ence dynamics, or spatio-temporal positions and trajectories [3, 4]
(see Fig. 2A).

Prior works have summarized users’ workflows and tasks for
analyzing movement data. Specifically, Andrienko et al. [4] clas-
sified the movement data analysis tasks as mover-oriented tasks
on trajectories, event-oriented tasks about spatial events, space-
oriented tasks about places of interest, and time-oriented tasks
on specific time units. During exploring spatio-temporal data or
model building [5, 19], an analyst can be interested in Space, Time,
or Objects, their elements [3], or the type of changes occurring over
time [4, 6, 8]. Such changes can be existential changes or changes
in spatial properties and thematic attributes. Moreover, an analyst

could be interested in the characteristics of the temporal domain,
such as a moment, pace, duration, sequence, or frequency [8].

2.2 Visual Analysis of Movement Data

As movement data is highly complex, its visualization can con-
tribute to the analysis procedure [4, 19] by supporting all its stages,
including data exploration, cleaning, preprocessing, and query-
ing [51]. The analysis can be driven by different models [3, 54],
research questions [19], or challenges [51]. Following, we focus on
the model presented in Fig. 2, describing the movement data with
its three components, Object, Space, and Time, and their relations,
with a particular focus on the human movement analysis.

Displaying color-encoded 2D or 3D trajectories is a common way
of representing Single Object motion data [31, 79]. For instance,
researchers have used trajectories to examine how people occupy
space in a social context [41], to support navigation in spatial record-
ings [42], or to explore human motion data in VR [35]. These visual-
izations can be augmented with object representations to provide a
better understanding of their motion and behavior. For example, sev-
eral works used 2D avatars [10], 3D simple avatars [11, 35, 42], and
3D detailed avatars [40, 57] for displaying humans. Furthermore, ob-
jects are often influenced by other objects [19], making it necessary
to support analysis processes related to Object-Object Relation.
For instance, a direct comparison of co-located objects [62], the
characterization of their interaction [40, 41], and additional visual-
izations [10, 11, 70] can be presented to uncover relations between
objects. Moreover, to explore movement data, not only the analysis
of single objects but also Aggregated Objects, via grouping and
clustering, is crucial [3, 51]. For this purpose, elements can be cate-
gorized based on characteristics (e.g., demographic information) to
summarize patterns or compare differences [1, 62]. It is also possi-
ble to categorize by the temporal component of the dataset, which
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allows for comparing study sessions [31, 35], typical dates [53, 69],
or several artificial, aggregated time duration [41, 79].

Another important aspect is the Object-Space Relation, the
interplay between objects and the environment or the context [64].
Such a relation and, therefore, the usage of space can be presented
by a bird-view floor map [2, 57], surveillance video review [10, 31,
70], or a 3D model of the environment [40, 41]. Moreover, as objects
can interact with the environment, the analysis of Object-Space
Interaction with a focus on specific locations in the environment
can also be of interest. That interaction can present touch or ma-
nipulation [10, 11], attention [2, 57, 70], engagement [10, 40, 42],
or other general interaction [1, 31, 41]. The interplay of objects
and locations can also be analyzed in groups, named Aggregated

Object-Space Relation. This can be visualized based on changes
in the temporal domain [8], like time duration or frequency (such
as in [11, 41, 42]). Moreover, a 2D transition trajectory [41, 63],
trail visualization [11, 40], or a synthetic visualization of movement
transitions [35, 42] can be used to visualize the flow of objects
in the space and how the movement transition between specific
locations takes place. This literature research highlights current
research aspects and interests with respect to human movement
analysis, further informing the design of a visual analytic system.
For more details about the resulting literature categories, please
refer to supplementary material (Sec. A and Tab. A1).

2.3 Immersive Analytics and Augmented

Reality

While previous research has shown how visualizations can support
different steps of the movement analysis process [51], most were
based on traditional 2D desktop setups. Recently, the research field
of Immersive Analytics (IA), where immersive technologies are used
to analyze data, has attracted attention and shown its value [36].
IA highlights making “use of engaging, embodied analysis tools to

support data understanding and decision making” [50]. This analy-
sis process can be enhanced by applying embedded and situated
visualizations, where the data representation is tightly integrated
or displayed close to the physical referent [21, 22, 37], like seen in
the Internet of Things scenarios [25].

In general, visualizations of data in immersive environments
have been extensively researched [12, 15, 33], including perceptual
problems [18, 23, 46], like the influence of the real-world back-
ground on virtual content [59]. While previous work has largely
investigated visualization [16, 24, 80], interaction [42, 77], and filter-
ing [30] movement data in VR, research on using AR visualizations
for movement data analysis is limited. Recently, MIRIA [11], an in-
situ AR analysis toolkit that provides solutions to understand user
interaction by visualizing spatial, interaction, and event data in the
original environment, has been proposed. It uses 3D trajectories to
display movement data and 2D visualizations, such as scatterplots
or heatmaps, to show event and interaction data. While the toolkit
allows placing additional visualizations on the floor or the walls in
the environment, it does not fully integrate the environment for
the exploration of the movement data. On the other hand, Reip-
schläger et al. [57] presented AvatAR, a mixed-reality environment
allowing exploring humanmovement behavior and interaction with
the physical environment through movement data visualizations

in the real world. AvatAR enables an analyst to understand how
a person represented as a full-body 3D virtual avatar touched or
gazed at the environment by embedding visualizations on them.
While AvatAR allows finding answers to questions focusing on the
human’s perspective (for instance, “Which part of the display did a
particular person touch?”), finding answers to the questions focus-
ing on the perspective of the environment (for example, “Which
part of the display was touched the most?”) is challenging.

Furthermore, to analyze data situated in the environment, not
only the presentation but also the interaction with visualizations is
crucial. Particularly, immersive technologies enable a closer cou-
pling between physical objects and their information. This pro-
vides great potential to interact with such information intuitively
through physical objects or environments, such as direct manipula-
tion [14, 78], gestures [43], or one’s own body [39].

2.4 Summary

Related work has shown that AR-based in-situ visualization can
support movement data analysis. Considering movement data com-
ponents, Space, Time, and Objects (see Fig. 2), and an arbitrary num-
ber of thematic properties, an analyst can take various perspectives
for exploring the data. While existing systems enable the analysis of
the movement data, they mainly focus on mover-oriented tasks on
trajectories [4]. However, a space-focused analysis, such as Single
Space, Space-Space Relation, and Aggregated Space, is also impor-
tant, as the environmental context is essential for understanding
movement behavior and path choices [51].

Subsequently, we see a research gap in approaches allowing in-
situ movement data analysis based on the physical objects within
the original environment. Such an analysis could benefit from an
AR-based immersive system since it enables displaying and freely
exploring information in the original environment. We thus aim to
provide a solution by utilizing situated physical objects with the
considerations of both geometry and temporal aspects of movement
data. Besides, our goal is to support a coherent visual analytic
workflow including overviewing, filtering, and querying.

3 PEARL: OVERVIEW

Wepresent Pearl -PhysicalEnvironment basedAugmentedReality
Lenses - an approach enabling analyzing and understanding human
movement data in the original space by utilizing the surrounding
physical environment. In the following, we describe the terminol-
ogy used throughout our paper (Sec. 3.1) and the functionalities
and requirements for Lenses (Sec. 3.2).

3.1 Term Definitions

Objects within the same environment might be in various degrees
of relation considering Space and Time (see Fig. 2A). While one
Object is moving, it is likely influenced by other Objects within
the same environment. In Pearl, we focus on two specific types of
Objects (see Fig. 2B), their relationship, and further linked concepts,
which are defined as follows and illustrated in Fig. 3:

Actor An Actor (see Fig. 2B) is any object capable of self-motion
(Mover in [4]). In our work, Actors only refer to humans
moving through a given environment.
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an analyst (A). (B) The human-generated movement data of

an Actor within a given environment. (C) A static physical

Referent with a set of thematic attributes. (D) The ROI , a
conceptual space based on the real world that the analyst

is interested in. (E) A Lens, an approximation to the ROI ,
which is created and defined by the analyst.

Referent A Referent is a physical object (see Fig. 2B) that is spa-
tially static (similar to Locations [3]). The Referents (assum-
ingly always present) have a single position and an extent
in space but no temporal position. However, as they are still
objects, they also possess a set of thematic attributes.

Region of Interest (ROI ) A ROI is an arbitrarily imagined space
in the real-world environment in which the spatial position
and extent are related and based on single or multiple Refer-
ents. It represents the research interest of an analyst and so
can be adjusted with the changing focus of the analysis.

Lens A Lens is a simple representation of 3D space and an ap-
proximation for a specific ROI . Lenses are designed for intu-
itive visualizations, interactions, and spatial queries based
on proximity, spanned hulls, or 3D volumes.

The core of Pearl revolves around the use of static physical
objects, the Referents. Such a focus allows an analyst to directly
interact with the physical objects as references for the movement
data and to understand the interaction between the Referents and
the movement of the Actors. However, while cases are relevant
where human movement is affected by dynamic objects and other
people in the environment, those are beyond the scope of this paper.

3.2 Design Considerations for Lenses
We present our design choices for the characteristics, features, and
functionalities of Lenses within Pearl.

Lens as ROI Representation. For each ROI , a specific Lens can
be initialized. As the ROI is related to a Referent, the initial size
and position of a Lens can be based on the geometry of a Referent
(via, e.g., Computer Vision techniques). A refinement of this Lens
through the analyst should be possible, like adjusting spatial extent
and position, form, or hull. In case analysts are interested in various
parts or the surrounding area of Referents (i.e., several ROIs on
one Referent, or ROI which does not fully encapsulate a Referent),
several Lenses should be attachable to one Referent.

Lens as Spatial Filter. As a Lens defines a spatial volume, a spa-
tial query based on the volume of the Lens can filter spatio-temporal

ED

CB

A

Figure 4: Interactions for creating, adjusting, selecting, and

grouping Lenses. (A)Holding a hand as a fist and then releas-

ing it creates a Lens around a Referent. (B) The dimension

of a Lens can be customized by a drag gesture or (C) by the

distance between analysts and Referents using a body gesture

holding both hands as fists. (D) A Lens can be selected by a

double tap gesture, highlighting it accordingly. (E) Multiple

Lenses with filters can be grouped via a clap gesture.

data. Furthermore, as various Lenses can exist simultaneously, their
results can be combined to enhance the data exploration further.
The resulting dataset can consist of either Actors’ movement (on
an actor level) that passed through the Lens or segments of Actors’
movement (on a data-point level) within the Lens.

Lens for Visualization. The dataset resulting from the Lenses
operation can be used as the input for visualizations. Those visual-
izations include trajectories or avatars focusing on singleActors, but
in particular, aggregated views combining several Actors and their
data points. Additionally, involved Referents can be used as spa-
tial anchors for placing and structuring additional movement data
visualizations to enhance the data exploration within the environ-
mental context. Specifically, visual representations of aggregated
information can be integrated into the environment, like embedded
visualizations on the floor or the Referent itself, situated directly
around and close to the Referent, or placed on the hull of the Lens.

4 PEARL: CONCEPTS

Based on our design considerations and an iterative design process,
we present Pearl concepts, which are grouped into three cate-
gories accompanied by the information of general functionalities.
In particular, we introduce general user interface components and
functionalities (Sec. 4.1), describe basic interactions for authoring
and managing Lenses (Sec. 4.2), introduce filter functions for Lenses
(Sec. 4.3), and propose visualization techniques related to Referents

and their Lenses (Sec. 4.4).
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Figure 5: Filters affect trajectory data visualizations on either

a data-point (A) or actor level (B-D). (A) A Positive filter on
the data-point level results in segments of the Actors’ move-

ment path. (B) A Negative filter excludes passing trajectories.
(C) illustrate Positive filters in an OR relation. (D) shows a

Positive and Negative filter in an AND relation, indicated by

the group number in the left upper corner. Notably, all gray

lines represent invisible trajectories.

4.1 General Functionality

In addition to the Lens as our main interactive element, we propose
two menus available to the users, a Lens- and a body-anchored
menu. The former is placed on the hull of a Lens, while the latter is
accessible by lifting a hand. The body-anchored menu also allows
for global filters on thematic attributes of spatio-temporal data.

4.2 Pearl Selectors: Managing ROI
As analysts are often interested in particular Referents and, with
that, in ROIs, defining and managing these regions for data ex-
plorations are essential. Pearl enables this functionality through
Lenses overlapping the ROIs. In Pearl, Lenses are represented by
a cuboid bounding box either as a full wire frame (see Fig. 4A) or
only with corner indicators (see Fig. 5). The system can change
between both visual states based on the proximity of the analyst
and a possible intent to interact with the Lens or its Referent. To
create a Lens based on a Referent (see Fig. 4A), an analyst has to
hold a fist close to a Referent, which is highlighted by a preview
box attached to the same hand. The transition from the fist to a flat
open hand will create a new Lens encapsulating the Referent. For
removing the Lens, the same gesture can be inverted.

Common 3D manipulation techniques (see Fig. 4B) can be used
to refine the Lens to match the ROI further. Additionally, an analyst
can hold both hands as fists in front of the face of the bounding
box to adjust the Lens based on the distance traveled by the user
(see Fig. 4C). Besides, performing a double tap on the bounding box
selects or deselects a Lens (see Fig. 4D). When multiple Lenses are
selected, synchronized operations, like a collective filter configura-
tion, can be executed via the body-anchored menu. Furthermore,
to ease managing a growing number of spatially scattered Lenses

and their properties, other overview UI elements can be used, such
as 2D interactive list views or a 2D minimap (similar to [57]).
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Figure 6: Placement regions of visualizations around the

physical object: (A) magnitude information as aggregated

visualizations superimposed on the object, (B) the spatial

and Object-Object Relation data as aggregated visualizations

embedded on the floor, (C) the 2D information visualization

next to the object for complex analysis, and (D) detailed

motion data as 3D spatial-temporal visualizations in space.

4.3 Pearl Filter: Refining Data Selections

Lenses can further be used as spatial queries to filter and refine
the movement data, in particular, 3D trajectories, as the increasing
amount of recorded Actors and recorded time leads to the “spaghetti
heaps” issue [17] and overwhelms analysts consequently. Lenses
can be configured for filtering either on an actor or data-point
level. In the example of trajectories, this can lead to less cluttered
complete trajectories (see Fig. 5B-D) or spatially-confined segments
of trajectories (see Fig. 5A), respectively.

A Lens as a filter can have either Positive or Negative polarity. A
Positive filter includes movement data of allActors or their segments
within the selected proximity to a Referent defined by the Lens (see
Fig. 5A). Conversely, a Negative filter excludes the movement data
of Actors passing through the corresponding Lens (see Fig. 5B). As
analysts might be interested in multiple ROIs in the environment,
Pearl enables combining filters of several Lenses via basic boolean
logic operators, OR and AND, for creating global filter queries on
the actor level. If there is more than one filter in the scene, they are
combined with OR relations by default (see Fig. 5C) for questions
like “Who visited at least one of these two Referents?”. Further, filters
on Lenses can also be grouped by an AND relation (see Fig. 5D) to
answer questions like “Who visited both of these two Referents?”.

The Lens-anchored menu or the overview UI element (map or
list views) can be used to apply a filter to a Lens. Moreover, multiple
filters can be grouped either by using the body-anchored UI or by
performing a grouping gesture (see Fig. 4E) while the corresponding
lenses are selected. Pearl uses the corner indicators surrounding
the bounding box to highlight the polarity and filter group state
of the Lens (see Fig. 5). Therefore, gray, green, and red are used
to highlight “no filter”, “a positive filter”, and “a negative filter”,
while a filled-out and numbered corner (see Fig. 5D) indicates the
affiliation with a filter group.

4.4 Pearl Visualizer: Visualizing Data

Lenses can also be used as data sources to create visualizations.
However, over-detailed visualizations can overwhelm analysts due
to a growing number of moving objects or Actors. Thus, Pearl
supports aggregated visualizations structured by the created Lenses.
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Figure 7: Superimposed embedded visualizations on Referents for magnitude information. (A) Embedded 3D bars overlaying

Referents can visualize magnitude information in situ. (B) Similarly, such visualizations can support comparing Actor clusters
using 3D stacked bars. (C) The aggregation of touch or gaze data can be shown as embedded heatmaps directly on the Referents.

CBA

Figure 8: Floor-embedded visualizations for spatial and relational data. (A) Flow View with arrowed flow visualizations shows

the direction and quantity of Actors’ group movement. (B) The navigation strategies of Actors can be informed by Sequence

View. (C) Approach View with radius bars surrounding the Referents shows the number of Actors approaching from the

respective directions.

Based on spatial relations to the Lenses (see Fig. 6), these visual-
izations can be embedded on a Referent (Sec. 4.4.1), embedded in
an environment (floor) (Sec. 4.4.2), situated to a Referent or placed
on a surface of a Lens (Sec. 4.4.3), situated within an environment
(Sec. 4.4.4), or a combination of above (Sec. 4.4.5).

4.4.1 Referent-Embedded Visualizations. Embedding information
directly on top of a Referent and with that within a Lens is the most
direct way to relate a visualization to its physical Referent. Referent-
embedded visualizations are chosen to enhance visual attention [76]
and to unify visual representations and data referents. In general,
such a direct embedding of visual information can be used to show
arbitrary visualizations overlapping the Referent or to relate and
highlight specific areas of the Referent.

Superimposed Visualization. Superimposed visualizations place
visual content at the same spatial position as the Referent within a
Lens, thus overlaying virtual information on top of the real world.
While such an overlay could cause obfuscation due to the visual
competition with Referents’ presence and natural features, it al-
lows analysts to navigate the environment easily. Accordingly, it
becomes important to use suitable simple visual representations for
presenting aggregated attributes of the available data. Examples are
the presentation of magnitude information (like the visit frequency
of a museum) as a 3D bar (see Fig. 7A) or grouped information
based on a specific parameter (like the time frames of interest) as
a 3D stacked bar (see Fig. 7B). As those visual artifacts are placed
throughout the environment, it becomes essential to provide a com-
mon frame of reference to enhance the comparison process, such
as an absolute vertical scale shared between all representations.

Emphasizing Referent Areas. Fine-grained engagement informa-
tion, such as touch and gaze attention, can be visualized directly
overlapping the Referents’ geometry. Moreover, the color satura-
tion and hue can be encoded with the data density (see Fig. 7C), as
commonly done with heatmap representations.

4.4.2 Environment-Embedded Visualizations. The encoding of space
and relationship information of Referents can be embedded into
Referents’ surrounding environment. In Pearl, we concentrate on
the floor as a surface to show content, as it can help to free up
analysts’ field of vision [60] and allows for displaying 2D visualiza-
tions as seen on 2D map-based movement data analysis tools (such
as in [71, 72]). Embedding visualization into the floor enables the
design of visual representations for different movement data fea-
tures, such as the transition, flow, and sequence of Actors between
Referents, the approach direction and the speed of such transitions,
and the general stay duration of Actors.

Flow View for Aggregated Transitions. As the Referents define
and guide the movement of Actors in the environment, it is crucial
to understand the Referents’ influence on the location transition
of Actors. Especially the flow of Actors within the space can be
aggregated and articulated via Flow View in the form of, for instance,
arrow-directed visualizations as linkages (see Fig. 8A). One such
link combines two Referents and encodes the number of transitions
on the width and the direction with arrows. With this visualization,
an analyst can detect not only potential patterns, like a “central
hub” (i.e., a physical object connected by many wide incoming or
outgoing linkages) but also which properties of the Referent resulted
in this. Moreover, multiple Actor groups can be color-coded to allow
for a comparison of navigation strategies.
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Figure 9: Situated visualizations with Referents side-by-side for complex analysis. (A) Situated bar charts next to ROIs show the

statistics of corresponding Referents. (B) Likewise, situated dotted line charts can show the visiting frequency over time in

detail. (C) 2D Gantt charts display co-located Actors’ timelines with 3D animated avatars for concurrent moments.

Sequence View for Individual Transitions. To understand themove-
ment behavior of a single Actor , more fine-grained visualization
like a trace depicting the sequence of the Actors’ engagement on
Referents, is needed. Hence, we use a fishbone-like Sequence View
(see Fig. 8B) with a similar visual encoding as the Flow View, repre-
senting one specific transition of a single Actor . To better reveal any
reoccurring transitions between several Referents, single fish-bones
between the same Actors are bundled together side-by-side. With
Sequence View, navigation strategies can be analyzed either collec-
tively via comprehending the pattern by the overview of linkages,
or individually via following the visiting sequence of an Actor .

Pace View for Aggregated Transitions. Aside from the quantity
and direction of location transitions, the Actors’ movement speed
between two Referents can also be of interest. Thus, we design Pace

View to show the average speed of Actors’ movement. It consists of
a fixed-width linkage on the floor connecting two involved Refer-

ents. The traversing speed is encoded by color saturation and hue,
resulting in heatmap-like, ribbon-shape visualizations. Thus, ana-
lysts are able to have a general overview of the pace of movement
among Referents.

Approach View for Aggregated Moving Directions. To understand
how Actors approach a specific Referent, we designed an Approach

View (see Fig. 8C) displayed around the Lens. Each Approach View

presents a number of bars ordered radially around the Lens. The
height of each bar indicates the number of Actors who approached
the Referent from the corresponding direction. Additionally, such
bars can be color-coded and stacked to allow for comparisons of
approaching strategies between Actor groups.

Heatmap for Aggregated Stay Duration. Moreover, 2D heatmap
visualizations can be embedded on the floor to show an overview
of aggregated time spent by Actors in different locations, thereby
revealing relationships between location and Actors’ engagement.
We thus use color hue and saturation to visualize the duration of
stay across the tracked space.

4.4.3 Referent-Situated Information Visualization. Visualizations
can be embedded and placed close to a given Referent (similar
to [25]). In Pearl, situated visualization can be placed directly
mapped to the hull of the Lens or only anchored to it while always
orienting towards the analyst. As situated visualizations likely com-
pete less with the visual features of the Referent, they can present
more complex information. Those include demographic attributes
like education status, age, or occupation, but also Referent-related

information, like stay duration within a Lens or visiting frequency
for multiple Actor groups. Such information can be presented as,
e.g., bar charts (see Fig. 9A) or line charts (see Fig. 9B). Furthermore,
auxiliary data that might aid the comprehension, such as video
recordings or images of a Referent, can be shown within the space
in appropriate locations.

4.4.4 3D Spatio-Temporal Visualizations. Pearl also supports the
visualization of spatial movements of Actors over time in the envi-
ronment, such as 3D trajectories of head and hand movement using
connected three-dimensional tube segments. These tube segments
can be color-coded according to the givenActor’s thematic property.
Besides, to reduce visual clutter, non-salient 3D trails, displaying
only the recent moments of the movement, can be shown. Lastly,
3D animated avatars, including head and two hands models, can be
displayed together with 3D trajectories or trails.

4.4.5 Combinative Visualizations. To analyze movement data in
various granularities, Pearl supports displaying a combination
of aggregated and detailed visualizations. This also alleviates the
challenges of individual visualization techniques. In the case of
trajectories, it is hard to understand proximal interactions between
Actors [11], as the spatial proximity of two trajectories does not
indicate spatio-temporal proximity - being together at the same
moment in time. Thus, we design an additional situated 2D Gantt
chart (situated to a Referent) as a local timeline overview, helping
identify when such concurrent moments occur (see Fig. 9C). Rele-
vant timelines of Actors are presented horizontally as color-coded
2D bars, highlighting the entry, exit time, and duration of stay of
Actors in relation to Lens. An interactive vertical line indicates the
current display time point and allows for navigating the time con-
veniently. Thus, concurrent visiting time frames among Actors can
be pinpointed via the overlapping areas of bars (namely, parts of
Actors’ timelines share the same horizontal axis). Using this visual-
ization, analysts can dive into the details of the situational context
by combining it with, for instance, a 3D trail view to observe the
detailed motion of Actors and social interactions among Actors.

5 INTERACTIVE PROTOTYPE

In this section, we introduce the prototype implementation of
Pearl. We describe the technical setup (Sec. 5.1), the overview of
our system (Sec. 5.2), and details for the computing and rendering
of aggregated and embedded visualizations (Sec. 5.3). Additionally,
we describe the recording of room-coupled human movement data
(Sec. 5.4) used in the evaluation presented later.
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5.1 Technical Setup

We implemented all three proposed Pearl components (Selector,
Filter and Visualizer) and their corresponding functionalities. How-
ever, as we focused on the core functionalities, the current object
detection is based on QR codes, the situated charts (in Fig. 9) and
overview UIs (like 2D minimap in Sec. 4.2) are not interactive, and
the referent-embedded visualizations presenting fine-grained en-
gagement (like showing touch or gaze density in Fig. 7C) are absent.

We implemented the prototype for Microsoft HoloLens 2 HMD
by using Unity 3D, MRTK1, and available open-source toolkits,
including u2Vis [58] and MIRIA [11]. Rendering is performed re-
motely on a PC with a GeForce RTX 3070 GPU and streamed wire-
lessly to the HMD. Notably, the goal of the prototype is to prove
the feasibility of our concept. Thus, our source code is available
on the project page2 to support further research and development
toward a comprehensive human motion analysis solution.

5.2 System Overview

In our prototype, we used a combination of QR code recognition
with pre-measured dimensions of the Referents to create pre-defined
Lenses. Other possibilities, like using computer vision techniques,
were also considered but rated as beyond the scope of this paper.

In general, logic filters can become arbitrarily complex. However,
as we primarily aim to demonstrate the feasibility of our concepts,
we opted only to implement a lightweight filtering logic. Thus, we
realized one global filter query, which combines Positive filters via
a single OR or AND relation, while all Negative filters are absolute
and connected with the Positive filters via an AND.

We used MRTK to implement a Lens-anchored menu positioned
at one face of the Lens and a body-anchored menu next to the user’s
hand for interacting with the system on demand. Additionally, to
implement the proposed free-hand gestures for the interaction with
Lenses, we used MRTK hand models and their joints.

5.3 In-Situ Visualization Computing and

Rendering

To generate the visualizations (see Fig. 10), our prototype uses a
graph-based data structure, considering the Lenses as nodes and the
spatio-temporal relations as edges. Based on this, it creates textures
for rendering floor-embedded visualizations on the ground. For
instance, to create a Flow View (see Fig. 1C), the prototype first
identifies the positions of all Lenses on a texture. Then, it renders
the edges as flows from the origin to the destination Lens with
the width defined by the number of Actors’ movement paths, the
color defined by clusters of Actors (such as age groups or gender),
and ensures no overlapping of edges by using varied control point
locations.

For proposed superimposed visualizations (like Fig. 7A+B) as
well as situated visualizations (like Fig. 9A+B), we utilized u2vis [58]
that supports the display of common information visualizations for
immersive analytics, such as 2D and 3D bar charts, scatter plots,
line charts, and pie charts. Moreover, spatio-temporal visualiza-
tions, including 3D trajectory, 3D trail, and 3D avatar, are based on
the MIRIA toolkit [11], where connected, three-dimensional tube
1https://www.github.com/microsoft/MixedRealityToolkit-Unity
2https://www.imld.de/PEARL

segments represent trajectories. These trajectories are color-coded
to match the Actors’ colors defined by the configuration file. Addi-
tionally, our prototype indicates the direction of the trajectories by
3D cones at the sample points. For more details about the imple-
mentation, please refer to the supplementary material (Sec. B) and
the provided source code.

5.4 Movement Data Recording

To test our prototype and use it in the following expert review, we
collected movement data within a simulated exhibition room. We
used Oculus Quest 2 VR headsets to record data in any environment
without needing elaborate tracking systems. The onboard inside-
out tracking system of the Quest 2 provides sufficiently accurate
head and hand pose over large areas. At the same time, the video
pass-through mixed reality feature allows the tracked participants
to view the real-world surroundings and move naturally without
fear of collision. A custom application was developed for the Quest
2 devices to manage the recording while the captured data was
uploaded via the network. A simulated exhibition room was pre-
pared (8.6 × 5.9m = 50.74𝑚2) to replicate a typical museum or lab
demonstration event for the motion data recordings (see Fig. 1).
The exhibition room had six objects of various shapes and heights.
These objects can be grouped as (1) Interactive Exhibits (an eye-like
music set, a gaming station, and a foot pedal set) and (2) Visual
Exhibits (an introduction board, a spine sculpture, and a molecular
sculpture) similar to an actual technical museum.

We invited nine university students (4 female, 5 male) to the
simulated exhibition room for data recording, which resulted in a
total of 27 min spatial movement data. To guide the process and
simulate everyday situations of an actual exhibition, we assigned
two personas to each participant in a counterbalanced order. Specif-
ically, participants acted either as an in-a-hurry persona visiting
only a few exhibits during peak hours or as a casual persona be-
ing curious about everything. However, they were also asked to
move and act freely. Meanwhile, experimenters briefly introduced
the exhibits to simulate the visiting experience. Our supplemental
material contains the recorded spatio-temporal data.

6 PRELIMINARY EVALUATION

To evaluate our concepts and the prototype, we conducted a pre-
liminary expert review (as in [47, 68, 73]) consisting of a guided
hands-on session and scenario-based cognitive walkthroughs (sim-
ilar to [57, 58]). We aimed to gain first experiences and discuss the
overall Pearl approach with invited experts. Thus, in this section,
we first describe two scenarios and then detail the expert review
and our findings.

6.1 Walkthroughs and Scenarios

We designed two scenarios considering a simulated exhibition room
for review (see Fig. 1). In general, the first scenario (Guided Interac-
tiveWalkthrough, Sec. 6.1.1) followsmore closely the functionalities
of our current implementation (see Sec. 5) and is based on the afore-
mentioned collected movement data. In contrast, the second one
(Envisioning Scenario, Sec. 6.1.2) describes a more sophisticated
scenario based on our visions of Pearl being utilized in the future.
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Figure 10: Our prototype was demonstrated in a simulated exhibition room: (A) A body gesture to modify the scope of Lenses
showing segmented trajectories. (B) Situated 2D bar charts placed next to Lenses for comparing visit frequency. (C) Sequence

View summarizing Actors’ location transitions among Lenses. (D) Pace View aggregating the movement speed between Lenses.
(E) 3D trajectories with associated 3D animated avatars. (F) Floor Heatmap showing Actors’ stay duration. (G) Several actor-
level filters with logic operators for 3D trajectories. (H) Co-located View combining a 2D Gantt chart, 3D animated avatars, and

trails.

6.1.1 Scenario of the Guided Interactive Walkthrough. A curator,
Lizzy, wants to understand exhibition visitors’ movements to op-
timize their navigation and path guidance. After creating Lenses
(see Fig. 10A) based on exhibits, Lizzy first starts comparing the
visit frequency based on periods of the day (morning, afternoon,
and evening) via the situated bar charts (see Fig. 10B) next to the
objects. Following this, she reduces the time range to concentrate
on the relatively hectic rush hours.

She uses the Sequence View (see Fig. 10C) to get a general
overview of how people travel through the exhibition. Lizzy notices
a pattern that people moved back and forth between an introduc-
tion board and the gaming station, as revealed by multiple in- and
outwards facing links of the same color. This is further confirmed
by the combination of Approach View and 3D trajectories (see
Fig. 1A), given that the approach direction is mostly from the infor-
mation board, whilst the same color trajectories appear very often.
Inspecting the introduction board, she sees that it also contains
detailed descriptions of the gaming station, which could have been
placed closer for better reference.

After noting this, she continues exploring the dataset via the
Pace View (see Fig. 10D). She notices that people moved slower
on the way to the exhibit on the corner. However, the Flow View

(see Fig. 1C) does not show an increasing amount of visitors there,
indicating that it is not due to long queuing. She then filters based
on this exhibit to only focus on segments of movements. Combining
with the 3DAvatar View (see Fig. 10E), she finally finds that people
were uncertain whether they were allowed to interact with this
exhibit due to the lack of signage, resulting in a longer waiting
time.

6.1.2 Envisioning Scenario. Sam wants to analyze visitors’ move-
ment in the now-ending exhibition to optimize the layout of the
upcoming one. He first creates several lenses around exhibits to

reduce the size of the data and then performs body gestures (see
Fig. 10A) to alter the dimensions of auto-generated lenses to fit his
ROIs better. As Samwants to focus first on interactive exhibits (such
as the gaming station) instead of visual ones, he applies Positive
and Negative filters on both categories, respectively.

Sam would like to understand how long visitors of different
ages engaged with exhibits. For that, he uses superimposed 3D

stacked bars (see Fig. 1B) that plot stay durations against different
age groups (children, teenagers, and adults) for selected exhibits.
Surprisingly, he finds that adults visited the gaming station longer
than children. At the same time, the 2D heatmap (see Fig. 10F)
shows that this exhibit had the most bystanders, as many visitors
stayed relatively far away. To further understand why this system
was not so popular with children, Sam activates the 3D avatar

view (see Fig. 10E). He can now identify that only a few children
could reach the gaming machine and control it on their own. Com-
bined with the 3D trajectories (see Fig. 10G) of the children, it
becomes apparent that many children took several steps back to
view the exhibit. Moreover, looking closer at adults’ movements as
3D avatars with trails (see Fig. 10H) nearby the gaming station,
it seems that adults often pointed to it while engaging with the
exhibit, seemingly explaining something. Thus, it becomes clear
that the accessibility of this exhibit is limited for children.

6.2 Participants

We invited four experts (2 female, 2 male; 𝑀 = 44 𝑦𝑒𝑎𝑟𝑠, 𝑆𝐷 =

10.23 𝑦𝑒𝑎𝑟𝑠), independent from our team. The experts (E1 - E4)
had diverse backgrounds: At the time of the study, E1 had 7 years
of experience as a museum curator and 10 years of experience
teaching museology at a university; E2 was a university professor of
computer science with 13 years of experience designing interactive
and visualization computer systems; E3 had 10 years of experience
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analyzing human movement data, especially via trajectories; and
E4 had 16 years of experience organizing and curating exhibitions
in combination with 10 years of experience with interactive system
design. In addition, E1 and E3 were only slightly familiar with
immersive technology (AR or VR), while E2 and E4 were very
familiar.

6.3 Procedure and Tasks

Each of our study sessions, based on the principles of semi-structured
qualitative studies [7], consisted of the following parts: (1) a brief
introduction accompanied by a short video demonstration and
presentation of slides about Pearl, (2) a guided interactive walk-
through based on system features (see Sec. 6.1.1), (3) an open-ended
discussion of two envisioning scenarios based on our prototype and
concepts (see Sec. 6.1.2), (4) and a post-study interview. Participants
were also asked to think aloud during the whole session. During
each session, the participants were audio-recorded, and an experi-
menter occasionally took notes. Each session lasted around 90 min.
We provide our study materials, including the guided walkthrough
and the envisioning scenarios, and the thematically grouped inter-
view answers in the supplementary material and on our project
page3.

6.4 Findings

We summarized all feedback from the experts, including obser-
vations, think-aloud comments, and post-study interviews. That
information was then used as a basis for thematic analysis [9],
followed by a cross-validation of two authors. In this section, we
present our findings as the following themes: a general impression
of our approach (Sec. 6.4.1), feedback for Pearl functions (Sec. 6.4.2),
discussions of perceptional issues (Sec. 6.4.3), and reflections on
analysis workflow and perspective (Sec. 6.4.4).

6.4.1 General Impression. The experts agreed with the general
mindset of Pearl, as “movement is also always correlated with [the]

environment” (E3). Further, they were excited about the potential
of Pearl, especially domain experts (E1, E3-4) expressed a strong
willingness to integrate it into their existing workflow, as it can be
“a great chance formuseums” (E1). The experts rated the use of AR for
data analysis as beneficial since it feels more immersive (E2, E4) and
intuitive (E3), and enables data sensemaking and reasoning as “you
have your own body to represent, compare, and relate” (E4). Moreover,
experts suggested potential use cases with Pearl, including the
evaluation of the sufficiency of the exhibition setup (E2) and the
visitors’ engagement format and duration (E1), as well as the design
of the physical environment, such as the navigation guidance (E4)
and the layout iteration (E1, E4). However, while appreciating the
potential, two experts (E1, E4) were also concerned about the data
collection and its potential influence on the visitors’ behaviors.

6.4.2 Pearl Feature Feedback. Focusing on physical referents with
the Lenses as a representation of ROIs was generally liked (E1-2,
E4). For instance, E4 mentioned that it was helpful to find “if people
have enough space to watch exhibits” (E4). Experts also appreciated
the potential flexibility offered by “different [analysis] resolutions”

3Project page: https://www.imld.de/PEARL

(E3), such as having several Lenses for multiple parts of the same ex-
hibit. Furthermore, most experts (E2-4) could easily and intuitively
interact with Lenses using gestures. While having difficulty using
gestures at the beginning of the hands-on session, E1 could quickly
learn and successfully perform them.

Both the actor-level (E1, E4) and data-point level filtering (E2-3)
based on the Lenses were considered useful. For example, E1 found
it “interesting to see the difference between visitors who visited vs. did

not visit the Introduction Board”. Moreover, the reduction of data
complexity was deemed beneficial: “otherwise, how should I analyze

the data in such a huge space” (E3). For the sake of study duration,
while we only presented two filters (one positive data-point level
and one negative actor level) in our study, the experts highlighted
the benefits of logic operations: “If there are two objects that need to
be visited together, [I want to see] if my idea really works” (E4).

Experts were excited about the presented visualizations and their
relation to Lenses: “It is good that visualizations are updating based
on the lenses” (E4). The novelty and potential usefulness of floor-
embedded aggregated visualizations, like Sequence View (E1-4),
Flow View (E1, E3-4), Approach View (E1-4), and Pace View (E2-3),
were highly appreciated. Experts explained that “floor encoding is
particularly helpful to reduce the stress of raw data” (E2) and “they

are so useful to find the [patterns]” (E3). In addition, experts also
mentioned the wish to combine single visualization techniques, like
Superimposed View and Sequence View, as “it could be interesting
to [...] know how many [visitors] and the ways they came” (E4).
Experts also indicated the need for transitioning between different
visualizations, as those “can supplement each other” (E3). For that,
other novel gestures, like “pushing traces (trajectories) to the floor to
get clearer [aggreagted] visualizations” (E2), were proposed.

6.4.3 Perceptual Issues. During the review, experts pointed out
some perceptual issues. For instance, E2 commented that atten-
tion switches between floor-embedded visualizations and referents
“have a trade-off because you focus on the floor and lose the focus

[of exhibits]”. Also, the need for having an overview of the visu-
alizations was mentioned (E3-4), considering viewing perspective
(inside-out vs. outside-in) and the HoloLens’ field of view (FoV)
(E4). For superimposed visualizations, experts also mentioned diffi-
culties in precisely comparing different 3D bars due to the viewing
perspective, “it is hard to tell or be sure [about the volume]” (E3).

Furthermore, experts suggested improvements in the visual de-
sign of Lenses. For example, the limited FoV of the HoloLens leads
to visibility issues as “lenses should be smaller” (E1). On the other
hand, experts also wanted additional visual cues to avoid missing
information due to the improper configurations, like “some pre-

views [...] to show this [lens] has been actually visited, or some hints

to suggest increasing the size of a lens” (E2).

6.4.4 Human Movement Analysis Workflow and Perspective. Based
on the hands-on review experience, two experts (E3-4) further de-
tailed their envisioning workflow with Pearl: starting with aggre-
gated visualizations for an overview (such as the floor-embedded
visualization) and then continuingwith detailed visualizations (such
as 3D Animated Avatars or 3D Trajectories). Moreover, E3 men-
tioned: “it is really good that you could have different starting points

[...]. Perhaps, I could change my procedure because the system allows
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me to do so”. However, it was also highlighted that such a work-
flow would depend on the research questions and the number of
recorded visitors. Notably, E3 (the human movement analysis and
trajectory expert) said: “I [usually] think about people (trajectories)
[while exploring movement data]; perhaps, I [will] have a different

perspective from now on”. E1 also highlighted the potential benefit
over his existing workflow: “right now [it] requires the exhibitor to

stay in the room, but with [Pearl], you can review [and] compare

[the movement data] anytime you want”.

7 DISCUSSION AND FUTUREWORK

In this section, we discuss our approach and design decisions in
the context of our overall vision of immersive analytics and in-
situ visualizations. We first reflect on lessons learned (the first
four topics) and then describe future steps (the last two topics). In
particular, we highlight some specific points mentioned by experts.

Power of Physical Referents for Human Movement Analysis. While
the evaluation remains preliminary and more general conclusions
would require further investigations, we could see the exciting
potential of Pearl for human movement analysis by referring to
physical objects that Actors engaged with. In particular, we recog-
nize that Pearl could help break down the inherent complex dataset
by reducing, summarizing, or aggregating it. Specifically, as experts
(E2-3) mentioned, functions like filters are useful for narrowing
down the exploratory space for movement data analysis. Moreover,
physical referents enable to further summarize movement data to
fine-grained aggregations, such as floor-embedded visualizations
that were particularly favored by experts (E1-4). This brings new
opportunities for introducing innovative visualization techniques
beyond generic aggregated visualizations like heatmaps. Lastly,
analyzing data in situ, in general, can facilitate data sensemaking
and reasoning. As E4 suggested, the presence of physical references
helps interpret the original context. Future MR systems could ex-
plicitly indicate such context by labeling ROIs into categories based
on the affordance of physical referents.

Physical Object Detection and ROIs Definition. Pearl can be used
in various physical environments with objects that have diverse
geometries and shapes. Thus, defining and adjusting Lenses for ap-
propriate ROIs can become demanding. We currently implemented
a simple cuboid bounding box as the first step. In the future, a
mixed method of computing automation and user inputs could be
promising. Specifically, advanced Computer Vision can facilitate
this process [26, 56] and predict the dimension of captured objects
on the fly [45, 52]. As a result, suitable dimensions of ROIs could be
recommended based on individual objects. However, it is currently
unclear and up for future research if such high-fidelity Lenses are
even needed, as no expert in our study had any concern regarding
the basic cuboid shape in the current implementation of Pearl.
Nevertheless, experts (E1-2, E4) indicated the limitation of the used
HMD regarding the visibility of Lenses. Besides, Lenses can be fur-
ther contextualized given the semantics of objects. For instance,
a vertical whiteboard or an exhibition shelf likely has ROIs in the
front instead of the backside. Moreover, remote (like raycasting) or
proxy interaction [55] possibilities could be considered for larger
objects, as direct manipulation might no longer be suitable.

Presence and Mobility of Physical Objects. Embedding AR visual-
ization in the original environment can keep users’ actual percep-
tion of physical objects and help analysts take the involved humans’
perspective, which enables contextualizing ROIs and understand-
ing the initial situation. However, the physical environment and
their situated objects are subject to change regarding their posi-
tion, dimensions, or presence, resulting in a mismatch between the
recorded situation and the existing environment. To tackle that, it is
possible to show a virtual object (like a table) in the analytic scene
for replicating the original environment [11] and to manipulate this
virtual representation for interacting with spatio-temporal data [42].
According to the expert walkthrough of Büschel et al. [11], this
helped users to understand the initial situation despite the absence
of the physical object. Thus, it seems a promising approach to inte-
grate virtual replacements of physical objects to maintain situation
awareness. At the same time, as our participants mentioned, this
would likewise help “to compare different setups” (E1) and “to train

practitioners [through] previous exhibitions” (E3). Lastly, while we
limited our current system to static physical objects, it is also imag-
inable to include and analyze the movement of physical objects
besides humans.

Visualization Placement with the Physical Referents. We designed
four visualization classes (see Sec. 4.4 and Fig. 6) to coordinate the
data referents and associated visualizations. In fact, though studies
have shown that users tend to place virtual content next to physical
objects [48, 49], it is unclear how to best arrange a layout of virtual
content in relation to physical referents in mixed reality. Moreover,
researchers have highlighted the importance of layout for Immer-
sive Analytics. For instance, Lin et al. [44] suggested embedded,
situated, and boundary placement for virtual labels to out-of-view
referents for situated visual searching. Similarly, Satriadi et al. [61]
proposed above, side-by-side, around, and overlay placement on
augmented globes. Additionally, the placement of virtual content
on the ceiling and floor in close proximity to the object is imag-
inable [60]. However, a far distance between visualizations and
physical referents might lead to an undesirable attention switch
and extra cognitive burden, as E2 commented when examining
floor-embedded visualizations. Thus, future research could con-
sider how the layout of visualizations to the physical data referents
affects visual analytic tasks in mixed reality to inform the layout
design. This becomes especially important when combining several
visualizations, as mentioned by E2.

Analysis within a Large In-Situ Space. Human movement can
be analyzed not only in a single room but also in a larger space
with several interconnected rooms, like a typical museum. As ex-
perts suggested, this can apply to future application scenarios, like
“architecture design, public space design, [and] interior design” (E4).
Hence, the system might be required to support managing the anal-
ysis process when ROIs are out of reach or out of view. As the
experts (E3-4) indicated, an overview functionality of visualizations
would support the analysis in these cases. Future work can explore
possible solutions, such as using a mobile device offering an addi-
tional overview interface, like the overview floor map for several
rooms [57]. Similarly, DistanciAR [74] introduced several remote
modes on a mobile tablet to manage out-of-view workspaces. More-
over, the Pearl filter can also be utilized to restrict the exploratory
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scope to a manageable space by, for instance, setting up filters on
the passages or doors.

Scalability and Design For Large Datasets. While our prototype
has shown the feasibility of the proposed approach, the system
design could be further extended for large datasets. Specifically, the
computation performance of in-situ visualization can be improved
by the space-partitioning data structure, whilst the rendering of
the floor-embedded visualizations can be moved from CPU to GPU
by a compute shader. From the system design perspective, future
applications could also facilitate combining heterogeneous filters,
including spatial queries based on location, global filters based on
Actors, and temporal filters based on time, to narrow down the
data scope. Besides, to mitigate the intersections of edges of floor-
embedded visualizations, methods like varying and limiting the
control points with a Voronoi-based method or force-directed edge
bundling techniques [29] can be applied. In addition, advancements
in user interaction capabilities, such as highlighting edges of floor-
embedded visualizations while hovering via raycasting, can also be
considered to improve visibility and wayfinding.

8 CONCLUSION

We presented Pearl, a physical environment based approach for
the in-situ analysis of human movement data in mixed-reality en-
vironments. In this work, we proposed an immersive analytics ap-
proach by utilizing physical referents as regions of interest. Based
on this, we introduced various concepts to support the exploration
of human motion data via selecting, filtering, and visualizing infor-
mation. Those concepts were further supported by our prototype
implementation and evaluated by expert review sessions. With
that, we demonstrated how Pearl can facilitate the analysis of
movement data as well as our vision of future in-situ analytics
workflows. Building upon this, future work can apply our approach
to real-world use cases and further empower domain experts.

Our work aims to enrich the repertoire of immersive in-situ
analysis strategies. Ultimately, we hope to inspire the exploration
of this exciting new perspective of designing and applying future
immersive analytics, which leverages physical referents for data
exploration.
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