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Figure 1. Examples of widgets triggered by Hand Contact Postures: Straightedge - rectangle menu; Corner - radial gauge; Fist - 

arc menu; PalmFingers - fan menu; PalmThumbPinky - colour wheel; PalmThumb - magic lens; Palm - directional pad. 

ABSTRACT 
Tabletop interaction can be enriched by considering whole 
hands as input instead of only fingertips. We describe a 
generalised, reproducible computer vision algorithm to 
recognise hand contact shapes, with support for arm rejec-
tion, as well as dynamic properties like finger movement 
and hover. A controlled experiment shows the algorithm 
can detect seven different contact shapes with roughly 91% 
average accuracy. The effect of long sleeves and non-user 
specific templates is also explored. The algorithm is used to 
trigger, parameterise, and dynamically control menu and 
tool widgets, and the usability of a subset of these are quali-
tatively evaluated in a realistic application. Based on our 
findings, we formulate a number of design recommenda-
tions for hand shape-based interaction. 
Author Keywords 
interactive tabletops; shape recognition; multi-touch; 
pen+touch; bimanual input; palm rejection 
INTRODUCTION 
Most multi-touch input uses one or more fingers for interac-
tion (e.g [1, 4, 10]) with whole hand contacts considered 
undesirable and filtered out [25]. However, when the sur-
face is large enough, intentional hand contact shapes can be 
used as first-class input for mode switching [31], tool selec-
tion [12] and other types of interaction techniques [16, 24, 

29, 30, 32]. The contact shape can be extracted using the 
raw capacitive signal [33] or infrared cameras mounted in 
or beneath the surface [24, 32, 35], depending on the avail-
able sensing technology. Previous shape-based interaction 
techniques typically use coarse features such as the overall 
contact ellipse [29] or treat contact shapes as end effectors 
for physics-based object manipulation [32]. However, ellip-
ses do not capture the full range of hand contact shapes and 
using contact geometry for manipulation does not translate 
well to interface widget control.  
Our objective is to leverage hand contact shapes to trigger 
different widgets "in-place" [15] and support dynamic adap-
tation and parameterisation according to hand placement 
and finger movements. The goal is for those widgets to 
function as quick-access tools summoned by the non-
dominant hand for bimanual interaction with pen and touch 
input [14, 19]. A challenge is to make these explicit widget-
triggering postures robust while still supporting relaxed arm 
poses, such as when the forearm rests on the surface. 
In this paper, we make the following contributions: 
• An easily reproducible algorithm using standard comput-

er vision functions to recognise typical hand shapes, with 
arm-rejection and hover filtering, using the raw grey im-
age provided by tabletop sensors; 

• Interaction techniques demonstrating how hand shapes 
can locally trigger and parameterise menus and tools with 
dynamic control based on hand and finger motion; 

• Evaluations of posture detection accuracy and realistic 
usage within a pen and touch application; 

• A discussion of design guidelines and expanded interac-
tions leveraging hover detection and estimation of local 
hand-on-surface pressure. 
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RELATED WORK 
Previous work has explored interactions on multi-touch 
tabletops and tablets, but recognition methods have been a 
secondary consideration. Wu and Balakrishnan propose a 
set of multi-finger and whole-hand techniques [30]. Rock & 
Rails are a set of hand gestures to constrain 2D manipula-
tion tasks [29]. Koura et al. use forearm contact for various 
interactions [16]. TouchTools enable virtual tool manipula-
tion based on the contact pattern of hands and fingers when 
mimicking the use of a physical tool [12]. MultiTouch 
Menus utilise the base of the palm and the five fingers to 
support advanced menu triggering [1], a concept further 
developed in HandMarks where grids of menu icons appear 
between fingers [26]. Koura et al. do not provide details 
about their recognition method, but the remaining works all 
use standard touch points and/or contact ellipses with their 
recognition algorithm tailored to specific interactions. 
Without using the full contour of the hand contact shape, 
generalisation is difficult and the capability for accurate 
widget placement and dynamic parameter control is limited. 
The full hand contact shape has been used for user identifi-
cation [24], recognising fingers and their orientations [33, 
35] and analysing hand occlusion [27], but these techniques 
do not generalise to recognition for interaction. ShapeTouch 
uses hand contour geometry to mimic close-to-physical 
object manipulations [32], but the technique does not rec-
ognise or classify hand shapes. Moreover, the works above 
have not formally evaluated hand contact recognition accu-
racy, and it is not known how usable whole-hand contacts 
would be in real application contexts. Finally, Le et al. 
explore four categories of contact postures when users lean 
on the tabletop, including hands, elbows and forearms [18]. 
The work elicits and recognises arm lean postures, but it 
does not look at hand contact shapes in detail. 
HAND CONTACT SHAPE RECOGNITION 
Our goal is to detect hand contact shapes suitable for pos-
ture-triggered widgets that may be dynamically positioned 
and adjusted based on simple geometric features. To sup-
port bimanual work with arm-resting, the algorithm should 
also be able to cope with shape traces left by those limbs.  
For speed and reproducibility, we use a pipeline of standard 
computer vision functions available in OpenCV. Our im-
plementation uses C# with the Emgu OpenCV wrapper. 
Calibration 
In its full version, our algorithm requires an estimated hand 
size and examples of hand contact shapes for all of the 
supported postures. In a one-time calibration step, each 
posture is formed twice in three positions at the bottom of 
the surface. The outstretched hand posture is formed with 
the wrist aligned with the bottom bezel to estimate hand 
length. All other postures are formed such that the top of 
the posture is aligned with the top of the outstretched hand.  
All images are processed using the steps below to create 
template contours for matching. Later, we evaluate when 
this calibration is per-user, and when it is based on generic 
templates obtained from different users. 

Capture 
Hand contact shapes can be captured using a camera 
mounted above the surface (e.g. [5]), but the most practical 
method is to capture from beneath. This can be a high reso-
lution image obtained from infrared cameras inside a direct 
illumination tabletop (e.g. original Microsoft Surface) or a 
coarse resolution image from the raw capacitive signal [33]. 
For our prototype implementation we use a Samsung 
SUR40 with Microsoft PixelSense as it exposes a highly 
sensitive raw input image as part of its API, which allows 
easy prototyping of interaction techniques based on arbi-
trary contact shapes [18]. The greyscale image has a resolu-
tion of 960×540 px (24 dpi) with fidelity between a conven-
tional camera and a raw capacitive signal, suggesting our 
approach could be adapted for either, provided signal 
strength can be tuned and raw touch data can be accessed 
for low-level processing [14]. 
Pre-processing 
After a greyscale image is captured, we apply a global 
threshold to create a binary image. From that image, we 
extract the connected component contours and group them 
according to size and shape. Smaller elliptical contours are 
fed to a finger and pen input processor (to handle them as 
standard touch and pen events) and contours exceeding 
thresholds corresponding to the minimum area of a hand 
contact are saved. Each contour polygon is simplified using 
the Douglas-Peucker algorithm. 
Hand Isolation and Forearm Rejection 
Comfortably forming a hand contact posture typically re-
quires resting the forearm on the surface. Because large 
shapes are also considered valid input in addition to smaller 
finger touches, we cannot discard large blobs altogether to 
"reject" arms and undesired contact shapes. We filter out 
the forearm to isolate the hand in the following way: First, 
the longest diagonal of the shape contour is determined with 

   
Figure 2. Hand contour segmentation process. Left: Original 
raw touch image of the hand. Middle: Polygon contour (red) 
with longest diagonal (green) and cut-off circle (pink) centred 

on the extremity H. Right: Extracted hand contour (blue). 

    
Figure 3. Examples of arm and hand shapes with detected 

contours. 

 



 

the end H corresponding to the top of the hand, determined 
using either frequency of convexity defects (indicating the 
likelihood of fingers) or a simple heuristic to select the end 
farthest away from orthogonal bezels. We then perform a 
Boolean AND operation between the shape contour and a 
circle centred at H with radius equal to the hand length 
obtained in the calibration step. The result of that operation 
is the isolated hand contour (Figure 2). Examples of differ-
ent hand postures extracted using that process are shown in 
Figure 3. 
Hover Filtering 
If the touch digitiser is sufficiently sensitive, hands and 
arms can be sensed even when slightly above the surface, 
which can sometimes lead to relaxed hand poses being 
falsely recognised as explicit contact. We exploit how ob-
jects above a touch surface appear blurred from capacitive 
signal degradation [14], camera focus, or light diffusion 
[22, 23], depending on the sensing technology. We quantify 
blur (and therefore hover) by calculating a sharpness index 
using local gradients along detected shape contours. Specif-
ically, we compute the Laplacian of the original grey image 
masked by shape component contours rendered with a 20-
pixel thick stroke. From those gradients, we determine a 
single measure of sharpness by calculating the standard 
deviation within the contour mask. The sharpness index is 
used to discard hands that are not completely touching the 
surface and support transitions between casual resting poses 
– distinguishing between fingers lightly curled when resting 
and explicit menu triggers when hands are fully in contact. 
Further below, we show how blurriness can also be used to 
support explicit interactions.  
Posture Matching 
From the previous operations, we obtain an array of hand 
contours. Each contour is classified as a specific hand pos-
ture in two steps, where the second step is optional if the 
features of the first method are sufficient. 
Convexity and Angle Matching 
The convex hull and its convexity defects are computed for 
each contour using techniques similar to mid-air hand and 
fingertip tracking [8]. We use convexity defects along with 
inter-finger angles as features to perform a first matching of 
the hand shape. These generally suffice to identify open 
hand postures with spread fingers, but postures such as 
closed fists and vertical hand edges that exhibit no defects, 
or only a small number of defects, remain ambiguous. 
Moment Matching 
To distinguish between shapes with similar convexity char-
acteristics, we perform an additional matching step based 
on contour similarity. There are numerous methods to 
measure similarity between shapes and polygons. We use 
the OpenCV matchShape function based on Hu Moments 
[21]. They are invariant to rotation, reflection and scale, 
making them suitable for matching left and right hand pos-
tures of different sizes and orientations. The shapes are 
matched against the templates obtained in the calibration. 

EVALUATION: ALGORITHM ROBUSTNESS 
In this evaluation, we measure algorithm recognition accu-
racy with a representative set of hand postures.  
Hand Postures 
Epps et al. [6] report which gestures people would adopt for 
a range of atomic tabletop tasks, many of which were used 
in research prototypes [20, 29, 30]. We use this as a starting 
place for the seven postures we evaluate (see also Figure 1): 
• Straightedge: a hand edge (appearing in previous work as 

vertical hand [6, 30], karate chop [20, 30] and rail [29]). 
• Corner: a hand edge with flexed fingers (appearing in 

previous work as corner-shaped hand [30], L-shaped 
hand [32], curved hand [6] and curved rail [29]). 

• Fist: an upright clenched fist (appearing in previous work 
as fist [6] and rock [29]). 

• Palm: a flat palm with joined fingers (appearing in previ-
ous work as flat hand and horizontal hand [30]). 

• PalmFingers: a flat palm with all spread fingers (appear-
ing in previous work as a spread hand [6] and used for 
user identification in [24]). 

• PalmThumb: a flat palm with abducted thumb (similar to 
postures used for grasping gestures [8], but we are not 
aware of it used for 2D shape-based input on tabletops). 

• PalmThumbPinky: a flat palm with abducted thumb and 
little finger (a new posture that we introduce). 

Participants and Apparatus 
We recruited 15 volunteers (12 males and 3 females, aver-
age age 28.2 years old). All were right-handed and used 
mobile touch devices on a daily basis. Eight participants 
also had some experience with digital tabletops. Those 
participants also completed a second study described later 
to evaluate qualitative aspects of widgets enabled by these 
postures. In both studies, we used the Samsung SUR40 
tabletop and the algorithm described above. 
Protocol and Task 
Each participant first completed the calibration step ex-
plained in the previous section. Then, they formed each of 
the seven postures twice in all regions of a 3×2 grid divid-
ing the tabletop surface. An indication of the hand posture 
to mimic was shown as an icon in a corner of the target 
area. The participants were instructed to form the posture in 
the designated region in a comfortable manner and they 
could rest their arm on the surface if they wished. The grid 
and emphasis on comfort allowed us to better capture dif-
ferent hand orientations and resting arm patterns. 
Pilot tests showed long sleeves could confuse the algorithm 
(example shown in Figure 4). Ten people wore shirts with 
long sleeves, therefore we asked all participants to first 
perform the calibration and testing steps with their sleeves 
rolled up. Then, the participants with long sleeves also 
performed the testing step with sleeves rolled down. 



 

Note that the algorithm did not run during this capture 
phase, only raw images were collected for later analysis. 
For all participants, we gathered 42 raw images for calibra-
tion (7 postures × 3 regions × 2 repetitions) and 84 raw 
images for testing (7 postures × 6 regions × 2 repetitions). 
For participants wearing long sleeves, we collected an addi-
tional 84 raw images. 
Results 

We processed images from the test sets against different 
choices of calibration data. A match success was registered 
if the correct shape had been recognised and a failure in all 
other cases (no or wrongly recognised shape). Table 1 

shows the recognition accuracies under different conditions 
and Table 2 displays the confusion matrix between the 
shapes for the worst case, that is, long sleeves with tem-
plates from other users. 
Per-User Templates 
Using templates from the same participant, the algorithm 
achieves a mean accuracy of 91%. All palm-based postures 
are above 96%, while Fist and Straightedge are less robust 
at 76%. Corners have a recognition accuracy of 90%. 
Other-User Templates 
To evaluate the feasibility of using generic hand shape 
templates for matching, we calculated accuracy rates for 
each participant using combined templates from all other 
participants. This reduces mean accuracy to 84%. All palm-
based postures are above 92% while Fist and Straightedge 
are again the least robust at 55% and 86% respectively. We 
attribute those differences to user-specific wrist orientations 
and differences in applied pressure on finger contacts when 
executing those poses. Depending on the size of the hand 
and the way fingers are clenched, for some users, a 
Straightedge can be mistakenly recognised as a Fist and 
vice versa (see confusion matrix in Table 2). 
Impact of Sleeves 
To evaluate the effect of users wearing long sleeves, we 
calculated accuracy rates for each participant, again using 
per-user templates and combined templates from all other 
participants. The average accuracy for long sleeves and per-
user templates falls by approximately 7% for both template 
conditions, but this is primarily due to non-palm postures. 
For other-user templates, the accuracy drop is similar. In 
this worst case, Fist has a score of 43.6% and thus is not 
properly detected more than half of the time. 
Summary 
Overall, per-user templates with no sleeves are preferred, 
but other-user templates and sleeves are still practical for 
palm-based postures. All palm-based postures accuracy 
rates are above 90% regardless of template and sleeve con-
ditions. This suggests that those postures can likely be used 
with a set of generic templates in application contexts, 
where individual calibration is not possible or too cumber-
some, such as tabletops available in public environments. 
SHAPE-BASED WIDGETS 
We now explain how detected hand postures can form the 
basis for locally triggered widgets, whose position, shape, 
and parameters can adapt to the contour of the hand. More-
over, the convexity defects, the spikes and other geomet-
rical properties of the shape obtained in the detection phase 
can also function as serviceable support points for the posi-
tioning and orientation of user interface elements. In partic-
ular, the region between the index finger and the thumb is a 
good candidate for widget placement or anchoring, as it is 
the largest space within the convex hull of the hand contour 
and also lends itself to a pinching metaphor, according to 
which users can virtually "hold" objects between their two 
fingers. Furthermore, the thumb can serve as a moving 

   
Figure 4. Example of an erroneously detected PalmThumb 

shape because of a long sleeve introducing a convexity defect  

 
Per-user 
templates 

Other-user 
templates 

Per-user 
templates 
w/ sleeves 

Other-user 
templates 
w/ sleeves 

Corner 89.9 80.5 80.6 70 

Palm 99.2 95 95.6 90 

PalmFingers 96.7 92.5 93.3 89.4 

PalmPinkyThumb 100 100 100 100 

PalmThumb 98.3 96.7 98.3 94.4 

Straightedge 75.8 54.7 65 56.7 

Fist 75.8 68.2 52. 8 43.6 

AVERAGE 90.8 83.9 83.7 77.7 

Table 1. Recognition accuracy (in %) 

 C P PF PPT PT S F nvsd 

Corner 70 0.2 0.2 8.5 8.1 9.8 2.4 0.7 

Palm 0 90 0 0 4.4 0 5.6 0 

PalmFingers 0 0 89.4 0 0 0 0 10.6 

PalmPinkyThumb 0 0 0 100 0 0 0 0 

PalmThumb 1.1 0 0.6 3.9 94.4 0 0 0 

Straightedge 11.7 0 0 3.3 0 56.7 26.1 2.2 

Fist 11.1 9.3 0 5.6 8.3 21.2 43.6 0.9 

Table 2: Confusion matrix for the worst condition (long 
sleeves with other user templates). Shape names have been 
abbreviated in the column labels but are listed in the same 

order. nvsd=no valid shape detected. 



 

"needle" to control the size or an attribute of the widget. 
The position of such a needle can easily be determined from 
the outmost spike formed by the thumb in the detected 
polygon. 
We believe our hand shape polygons with identified hull 
defects theoretically allow finer widget arrangement com-
pared to coarse ellipses [29] or techniques solely based on 
finger input [1, 4, 10, 26] and provide robust positioning 
anchors that are not readily available from continuous inter-
action paradigms based on physical models [32]. We pro-
vide examples of how those anchors can be used with con-
crete widgets below. 
Posture-Widget Mappings 
The above postures can be mapped to different types of 
widgets depending on their shape and space created around 
them. Examples of such associations are shown in Figure 1. 
Depending on the application context and the role of the 
hands in the target tasks, some mappings can be more judi-
cious than others. For instance, postures with abducted 
index finger and thumb and hand edges with flexed fingers 
lend themselves to widgets that can adapt or be modulated 
by finger movements. The widgets associated with Palm-
Fingers, PalmThumb, PalmThumbPinky, and Corner illus-
trate examples of such components (Figure 1 and Figure 6). 
Respectively, these are: a fan-shaped menu with adjustable 
opening angle, where additional items can be displayed 
beyond a particular threshold; a magic lens with controlla-
ble size or zoom level; an HSV colour wheel with modifia-
ble saturation value; and a radial gauge. In the first three 
cases, the position or angle of the thumb adjusts a parameter 
of the widget, while in the fourth example the position of 
the gauge needle is determined by the angle formed by the 
flexed fingers with respect to the edge of the palm. We 

believe those interactions are intuitive and easy to execute 
as they are mapped to natural movements of the hand and 
leverage spatial memory for menu selection [26]. 
Application Context 
We see the primary application context of our shape-based 
widgets to be bimanual work settings derived from tradi-
tional tabletop or desktop activities, where the non-
dominant hand (NDH) lies on the surface while the domi-
nant hand (DH) executes the main task. Classic examples of 
this bimanual division of labour in desktop work are draw-
ing and writing [11]. Thus, we would like our detectable 
shapes and their associated menus to be actionable by 
switching from casual hand-resting poses with relaxed 
(lightly bent) fingers to specific taut postures near the user's 
workspace (Figure 5). Those transitions may involve very 
different postures or only small motions of the NDH, where 
sometimes even a slight lateral movement of a single finger 
suffices. We believe such a trigger mechanism is an inter-
esting alternative to other more active menu-calling meth-
ods involving dragging gestures [15, 17, 19, 34]. Dragging 
is potentially problematic on friction-prone tabletop surfac-
es such as glass panes, so interactions with a low drag de-
mand are desirable. Furthermore, we feel that the DH mo-
mentarily leaving the workspace to select an item from a 
menu activated or "held" by the NDH is an intuitive, even if 
not necessarily efficient, gesture. We liken it to the painter 
holding a palette in their NDH, while the brush held by the 
DH from time to time moves away from the canvas to dip 
into the colours of the palette before returning to the main 
painting task. In contrast to NDH chords [2, 9, 28], we also 
believe hand shape contains more information to be ex-
ploited for precise positioning and richer interaction. 

  
 

   
Figure 6. Using the thumb to control a widget parameter. Top: 

displaying further information about menu items. Bottom: 
controlling the saturation value of a colour wheel. Visual feed-
back for the selected colour is a thickly stroked hand contour. 

 

 

 
Figure 5. Transitioning from a relaxed pose of the non-

dominant hand on the tabletop surface to a menu-triggering 
posture in a bimanual pen and touch context. 

 



 

EVALUATION: USABILITY IN CONTEXT 
The formal analysis in the first evaluation did not consider 
errors emerging in the context of a real task, where the arm 
rests on the surface and switches between various menu-
triggering postures. In pilot tests, we found that some 
shapes are more prone to involuntarily activation during 
casual interactions, especially those with few or no convexi-
ty defects, like Palm, Straightedge, and Fist. Furthermore, 
the dominant hand pose when writing can sometimes be 
misrecognised as a Corner posture. These observations, 
combined with lower recognition accuracies for non-palm-
based shapes, suggest some postures may be unreliable 
without additional filtering or input data if users may freely 
rest their arms (potentially with long sleeves) and hands. 
Therefore, we focus on the most accurately recognised 
PalmThumb, PalmFingers and PalmThumbPinky postures 
for further exploration and evaluation in a real application 
context where arm-resting is permitted. The same 15 partic-
ipants took part in this second. Before running the actual 
study, we let participants test a demo interface featuring all 
supported postures and associated widgets shown in Figure 
1. The goal of this study was to assess the general suitabil-
ity and viability of selected hand shapes as menu triggers. 
We logged all actions and recorded possible mistakes or 
errors through observation along with qualitative feedback 
collected after the completion of the tasks. 
Task 
We chose a pen and touch drawing task, a classic example 
of bimanual tabletop work. The task we asked participants 
to execute was to roughly reproduce a series of four col-
oured sketches appearing in different areas of the work-
space using a minimal toolset consisting of two menus: a 
colour wheel and a three-level fan menu to select stroke 
widths, undo, redo actions and a delete mode (Figure 5 
bottom). Menu items could be selected either using finger 
touch or the pen. Visual feedback of selected ink or mode 
properties was provided as coloured contours of the hand 
and arm while touching the surface. The stroke colour and 
thickness reflected the currently selected menu settings, as 
illustrated in Figure 6 (bottom). Delete mode, when en-
gaged, was indicated by a dashed contour. The sketches to 
reproduce were such that, to complete them, at least five 
menu activations and six item selections were needed, ei-
ther to change the colour or the thickness of the stroke. 
Protocol and Design 
We conducted two different series of sketching tasks under 
different shape-matching schemes and posture-widget asso-
ciations. Specifically, for one series (series A) we associat-
ed the colour wheel with PalmThumb and the tool menu 
with a relaxed version of PalmThumbPinky, that is, we 
allowed the ring finger to also be slightly abducted for the 
menu to be triggered. The shapes were recognised by the 
full algorithm described above, i.e. using the two shape-
matching methods and with the user-specific templates 
obtained from the first part of the study. For the other series 
(series B), the colour wheel was to be triggered with Palm-

Fingers and the tool menu with relaxed PalmThumbPinky. 
Since those postures involve at least two convexity defects, 
detection, here, was handled only using the method based 
on angle and defects matching. We were curious to see if 
those features would suffice to ensure a smooth experience 
with no or few false positives. Note that in both cases, users 
could switch between the two different postures with a 
simple abduction/adduction movement of a finger only: the 
little finger for a switch between PalmThumb and relaxed 
PalmThumbPinky and the index finger to change between 
relaxed PalmThumbPinky and PalmFingers. Moving the 
thumb was also possible in both cases to change the bright-
ness of the current colour selection in the wheel. 
Participants performed the tasks with both series. The order 
of the series and their association with each drawing model 
were counterbalanced. 
Results 
Overall, participants could easily trigger and use the colour 
wheel and the tool menu. Table 3 summarises the average 
number of menu invocations, menu item selections and 
errors that participants made in the two series. 

 Series A Series B 

Avg. Menu Invocations 23.9 (SD=3) 25.1 (SD=3.5) 

Avg. Item Selections 78.4 (SD=26.8) 72 (SD=15.8) 

Avg. Invocation Errors 3.5 (SD=1.5) 2.7 (SD=1.7) 

Table 3. Average menu invocations, item selections and invo-
cation errors for the two sketching series  

Errors 
The menu invocation errors represent instances where users 
did not obtain the expected menu or a menu wrongly ap-
peared due to misrecognitions or hand postures not being 
correctly executed (as observed by the study supervisor). In 
other words, errors include both false negatives and posi-
tives as they often occurred together. Indeed, we observed 
that most mistakes happened when a particular finger was 
not joined tightly enough to the others and thus, with the 
noise in the raw image data, caused the recognition algo-
rithm to oscillate around the dividing threshold between the 
two menu signatures, which made the widgets appear in 
rapid successions. Participants were quick to react when 
they noticed that behaviour, and adjusted their finger posi-
tion accordingly so that the desired menu was displayed in a 
stable manner. For most participants, this adjustment was 
only a matter of adopting the right habit, but, despite our 
efforts to relax some of the postures to allow for more flex-
ibility, for three people, it was more difficult to keep fingers 
together or to spread them sufficiently wide apart in order 
to form the correct hand shape that would generate the 
required number of convexity defects. Conversely, some 
participants were much suppler and could extend their 
thumb very far, enabling wider ranges of angle-based adap-
tations between the index finger and the thumb. 



 

Usage Pattern 
Because the sketches were designed to require relatively 
frequent tool or colour changes, all participants mostly kept 
a menu hand posture active at all times and only four of 
them occasionally relaxed their hand or collapsed their 
fingers to make menus disappear. 
Regarding the preferred switching method using the little 
finger or the index finger, 11 participants preferred the 
latter and 4 the former. Switching between the two types of 
menu using the index finger was generally perceived as 
being easier and more intuitive but people also remarked 
that it sometimes affected interaction with widgets that 
appeared within the index-thumb area. Conversely, chang-
ing menus with the little finger was deemed slightly more 
difficult but it had the advantage of being clearly separated 
from the menu display zone. 
Regarding the finger motion itself, the majority of partici-
pants performed switches by abducting and adducting the 
required finger, but two participants found out they could 
also change menus by simply lifting the required finger. 
This gesture caused a convexity defect to disappear and 
thus trigger the other menu. Of course, keeping a finger 
raised while the rest of the hand is pressed flat on the sur-
face for an extended period of time causes discomfort and 
thus, such poses are only viable for temporary activations. 
Continuing with the subject of muscular strain, four partici-
pants said that it was a little tiring to keep the palm down 
with all fingers spread for an extended period. This is not 
required by the interaction design, however, since menus 
can be triggered only when they are needed and the hand 
relaxed when not (Figure 5). 
An interesting behaviour that we observed with three partic-
ipants is that they would summon the colour wheel in the 
vicinity of the model sketch to be able to closely compare 
and match the colour that needed to be selected. While this 
type of operation is certainly possible with any movable or 
in-place menu, we believe that our widget-calling tech-
niques are particularly suited for local placements and 
toolglass-like interactions [3], as users immediately know 
where and how they can expect widgets to appear when 
they place their hand at the desired location on the display. 
Recall 
Another comment that we received from our participants is 
that remembering which menu is activated by which finger 
position can be difficult when not familiar with the pos-
tures. Three people expressed that they would rather have 
had two markedly different postures, for example, a Palm 
and a StraightEdge to make the switching motion more 
obvious and thus cognitively more explicit. Posture-Tool 
associations are a matter of design choice, however, and 
widgets can be mapped to different shapes depending on 
user preferences and application context. If desired, very 
different postures can be chosen so that clearer separations 
exist between shape triggers in order to make them easier to 
remember, but at the cost of additional physical effort. 

DISCUSSION 
Our results can be summarised as design recommendations: 
• Palm-based whole-hand postures are more robust as 

shape-based triggers than postures that generate a smaller 
or thinner handprint. They are less user-dependent and 
less prone to misdetections due to long sleeves and im-
properly rejected arm contact shapes. Therefore, we rec-
ommend they be considered first for hand shape-based 
interaction vocabularies. Careful consideration for possi-
ble dexterity and fatigue issues should be given. 

• The more convexity defects the hand shape exhibits, the 
easier it is to identify using only convexity and angle 
matching, relying less on user-specific shape templates. 
Thus, postures such as PalmFingers and Palm-
ThumbPinky are preferred when users cannot calibrate, 
such as public contexts. 

• Due to differences in finger articulation skills, it is wise 
to relax posture requirements for a single widget trigger, 
especially one or two non-thumb finger abductions. 

• Fingers, especially thumbs, can be used as moving nee-
dles to adapt or set widget parameters. The achievable 
scope is however very user-specific, as it depends on the 
extent of the joints' flexion and extension ranges. We 
suggest using either discrete switches or continuous map-
pings across short articulation ranges (similar to thumb 
controls used on gripped tablets [7]). When using such 
designs, potential conflicts with other finger-based pos-
tures should also be taken into consideration. 

ADVANCED INTERACTIONS USING HOVER DETECTION 
With minor refinements to our sharpness index algorithm, 
we can expand hand contact shape interaction to support 
explicit hover-based input.  
Hover Detection for Proximity 
Discrete approximations of hand hover can be obtained by 
using the sharpness index as an estimate of height. Ideally, 
we would like to have a hover state for each of our detected 
hand pose, but we found that it was not possible to obtain 
clear contours and convexity defects while the hand is 
above the surface (Figure 7 left). In practice, we can only 
define a general hover state by finding the right sharpness 
index threshold. This hover state can be used to trigger a 

   
Figure 7. Left: hovering hand blurry image. Right: help guide 

revealed with a hand held for a moment above the surface. 

 



 

help guide for novices revealing which hand shape sum-
mons which widget (Figure 7 right). 
Hover Detection for Shear and Tilt 
When a palm is tilted or shear forces applied, the blurriness 
of the hand shape has a distinct pattern with sharp disconti-
nuities on one side and dim contours on the other. The dif-
ference between gradients applied to each side of the hand 
contour can be used to detect tilt direction. 

  
Figure 8. Tilting the palm to control a four-way direction 

widget. The portion of the hand pressing hard on the surface 
produces a sharp contour in that area of the contact shape, 

while the opposite region appears blurry. 

Our algorithm can be extended to compute multiple local 
sharpness indices around the shape contour to estimate the 
amount of pressure exerted at those regions. This theoreti-
cally offers more flexibility for generic shapes than tech-
niques to detect finger angles based on ellipses [33] or fin-
gers [4, 13]. Probably the best posture to demonstrate this 
capability is Palm. In this pose, four zones corresponding to 
tilting or applied pressure can be defined for left, right, top 
and bottom directions. By measuring the differences be-
tween opposing indices, the tilt direction of the hand can be 
determined and used to control a navigation widget (Figure 
8). 
CONCLUSION AND FUTURE WORK 
We described a generalised, reproducible computer vision 
algorithm to recognise hand contact shapes where arms can 
rest on the surface. We showed how hand postures can 
enable a variety of control menu and tool widgets well 
suited to bimanual tasks, where the non-dominant hand 
summons widgets and triggers modes to set the context for 
dominant hand input. Our evaluation of the detection accu-
racy and the performance of selected widgets in a realistic 
application provided us with valuable insights into contact 
shape-based interaction. Our main finding is that palm-
based postures with spread fingers are most reliable, but 
user-specific articulatory issues are important to consider. 
As future work, the accuracy of non-palm shapes could 
perhaps be improved by including texture features to further 
differentiate similar contour geometries. Our algorithm does 
not directly recognise hand poses when fingers are detected 
as separate blobs, such as during a grabbing motion. By 
tuning the hover and binarisation thresholds and training on 
those poses, we believe our method can be extended, which 
would further expand the range of the interaction vocabu-

lary. To further increase the overall recognition precision 
and support the robust classification of even more postures, 
a machine-learning approach might be worth considering, 
especially as powerful deep-learning toolkits are becoming 
available. Finally, the potential for proximity, pressure, and 
tilt detection also warrant more detailed investigations. 
We hope our work provides a practical tool, ideas, and 
insights for researchers and designers interested in hand 
contact shape-based interaction. 
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