

Hand Contact Shape Recognition for Posture-Based
Tabletop Widgets and Interaction

Fabrice Matulic1,2 Daniel Vogel1 Raimund Dachselt2
1Cheriton School of Computer Science
University of Waterloo, ON, Canada

{fabrice.matulic, dvogel}@uwaterloo.ca

2Interactive Media Lab Dresden
Technische Universität Dresden, Germany

dachselt@acm.org

Figure 1. Examples of widgets triggered by Hand Contact Postures: Straightedge - rectangle menu; Corner - radial gauge; Fist -

arc menu; PalmFingers - fan menu; PalmThumbPinky - colour wheel; PalmThumb - magic lens; Palm - directional pad.

ABSTRACT
Tabletop interaction can be enriched by considering whole
hands as input instead of only fingertips. We describe a
generalised, reproducible computer vision algorithm to
recognise hand contact shapes, with support for arm rejec-
tion, as well as dynamic properties like finger movement
and hover. A controlled experiment shows the algorithm
can detect seven different contact shapes with roughly 91%
average accuracy. The effect of long sleeves and non-user
specific templates is also explored. The algorithm is used to
trigger, parameterise, and dynamically control menu and
tool widgets, and the usability of a subset of these are quali-
tatively evaluated in a realistic application. Based on our
findings, we formulate a number of design recommenda-
tions for hand shape-based interaction.
Author Keywords
interactive tabletops; shape recognition; multi-touch;
pen+touch; bimanual input; palm rejection
INTRODUCTION
Most multi-touch input uses one or more fingers for interac-
tion (e.g [1, 4, 10]) with whole hand contacts considered
undesirable and filtered out [25]. However, when the sur-
face is large enough, intentional hand contact shapes can be
used as first-class input for mode switching [31], tool selec-
tion [12] and other types of interaction techniques [16, 24,

29, 30, 32]. The contact shape can be extracted using the
raw capacitive signal [33] or infrared cameras mounted in
or beneath the surface [24, 32, 35], depending on the avail-
able sensing technology. Previous shape-based interaction
techniques typically use coarse features such as the overall
contact ellipse [29] or treat contact shapes as end effectors
for physics-based object manipulation [32]. However, ellip-
ses do not capture the full range of hand contact shapes and
using contact geometry for manipulation does not translate
well to interface widget control.
Our objective is to leverage hand contact shapes to trigger
different widgets "in-place" [15] and support dynamic adap-
tation and parameterisation according to hand placement
and finger movements. The goal is for those widgets to
function as quick-access tools summoned by the non-
dominant hand for bimanual interaction with pen and touch
input [14, 19]. A challenge is to make these explicit widget-
triggering postures robust while still supporting relaxed arm
poses, such as when the forearm rests on the surface.
In this paper, we make the following contributions:
• An easily reproducible algorithm using standard comput-

er vision functions to recognise typical hand shapes, with
arm-rejection and hover filtering, using the raw grey im-
age provided by tabletop sensors;

• Interaction techniques demonstrating how hand shapes
can locally trigger and parameterise menus and tools with
dynamic control based on hand and finger motion;

• Evaluations of posture detection accuracy and realistic
usage within a pen and touch application;

• A discussion of design guidelines and expanded interac-
tions leveraging hover detection and estimation of local
hand-on-surface pressure.

Straightedge

Corner

Fist

Palm

PalmFingers

PalmThumb

PalmThumbPinky

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ISS '17, October 17–20, 2017, Brighton, United Kingdom
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4691-7/17/10…$15.00
https://doi.org/10.1145/3132272.3134126

https://deref-web-02.de/mail/mobile/D9wLd7Memx0/deref/?redirectUrl=https%3A%2F%2Fdoi.org%2F10.1145%2F3132272.3134126

RELATED WORK
Previous work has explored interactions on multi-touch
tabletops and tablets, but recognition methods have been a
secondary consideration. Wu and Balakrishnan propose a
set of multi-finger and whole-hand techniques [30]. Rock &
Rails are a set of hand gestures to constrain 2D manipula-
tion tasks [29]. Koura et al. use forearm contact for various
interactions [16]. TouchTools enable virtual tool manipula-
tion based on the contact pattern of hands and fingers when
mimicking the use of a physical tool [12]. MultiTouch
Menus utilise the base of the palm and the five fingers to
support advanced menu triggering [1], a concept further
developed in HandMarks where grids of menu icons appear
between fingers [26]. Koura et al. do not provide details
about their recognition method, but the remaining works all
use standard touch points and/or contact ellipses with their
recognition algorithm tailored to specific interactions.
Without using the full contour of the hand contact shape,
generalisation is difficult and the capability for accurate
widget placement and dynamic parameter control is limited.
The full hand contact shape has been used for user identifi-
cation [24], recognising fingers and their orientations [33,
35] and analysing hand occlusion [27], but these techniques
do not generalise to recognition for interaction. ShapeTouch
uses hand contour geometry to mimic close-to-physical
object manipulations [32], but the technique does not rec-
ognise or classify hand shapes. Moreover, the works above
have not formally evaluated hand contact recognition accu-
racy, and it is not known how usable whole-hand contacts
would be in real application contexts. Finally, Le et al.
explore four categories of contact postures when users lean
on the tabletop, including hands, elbows and forearms [18].
The work elicits and recognises arm lean postures, but it
does not look at hand contact shapes in detail.
HAND CONTACT SHAPE RECOGNITION
Our goal is to detect hand contact shapes suitable for pos-
ture-triggered widgets that may be dynamically positioned
and adjusted based on simple geometric features. To sup-
port bimanual work with arm-resting, the algorithm should
also be able to cope with shape traces left by those limbs.
For speed and reproducibility, we use a pipeline of standard
computer vision functions available in OpenCV. Our im-
plementation uses C# with the Emgu OpenCV wrapper.
Calibration
In its full version, our algorithm requires an estimated hand
size and examples of hand contact shapes for all of the
supported postures. In a one-time calibration step, each
posture is formed twice in three positions at the bottom of
the surface. The outstretched hand posture is formed with
the wrist aligned with the bottom bezel to estimate hand
length. All other postures are formed such that the top of
the posture is aligned with the top of the outstretched hand.
All images are processed using the steps below to create
template contours for matching. Later, we evaluate when
this calibration is per-user, and when it is based on generic
templates obtained from different users.

Capture
Hand contact shapes can be captured using a camera
mounted above the surface (e.g. [5]), but the most practical
method is to capture from beneath. This can be a high reso-
lution image obtained from infrared cameras inside a direct
illumination tabletop (e.g. original Microsoft Surface) or a
coarse resolution image from the raw capacitive signal [33].
For our prototype implementation we use a Samsung
SUR40 with Microsoft PixelSense as it exposes a highly
sensitive raw input image as part of its API, which allows
easy prototyping of interaction techniques based on arbi-
trary contact shapes [18]. The greyscale image has a resolu-
tion of 960×540 px (24 dpi) with fidelity between a conven-
tional camera and a raw capacitive signal, suggesting our
approach could be adapted for either, provided signal
strength can be tuned and raw touch data can be accessed
for low-level processing [14].
Pre-processing
After a greyscale image is captured, we apply a global
threshold to create a binary image. From that image, we
extract the connected component contours and group them
according to size and shape. Smaller elliptical contours are
fed to a finger and pen input processor (to handle them as
standard touch and pen events) and contours exceeding
thresholds corresponding to the minimum area of a hand
contact are saved. Each contour polygon is simplified using
the Douglas-Peucker algorithm.
Hand Isolation and Forearm Rejection
Comfortably forming a hand contact posture typically re-
quires resting the forearm on the surface. Because large
shapes are also considered valid input in addition to smaller
finger touches, we cannot discard large blobs altogether to
"reject" arms and undesired contact shapes. We filter out
the forearm to isolate the hand in the following way: First,
the longest diagonal of the shape contour is determined with

Figure 2. Hand contour segmentation process. Left: Original
raw touch image of the hand. Middle: Polygon contour (red)
with longest diagonal (green) and cut-off circle (pink) centred

on the extremity H. Right: Extracted hand contour (blue).

Figure 3. Examples of arm and hand shapes with detected

contours.

the end H corresponding to the top of the hand, determined
using either frequency of convexity defects (indicating the
likelihood of fingers) or a simple heuristic to select the end
farthest away from orthogonal bezels. We then perform a
Boolean AND operation between the shape contour and a
circle centred at H with radius equal to the hand length
obtained in the calibration step. The result of that operation
is the isolated hand contour (Figure 2). Examples of differ-
ent hand postures extracted using that process are shown in
Figure 3.
Hover Filtering
If the touch digitiser is sufficiently sensitive, hands and
arms can be sensed even when slightly above the surface,
which can sometimes lead to relaxed hand poses being
falsely recognised as explicit contact. We exploit how ob-
jects above a touch surface appear blurred from capacitive
signal degradation [14], camera focus, or light diffusion
[22, 23], depending on the sensing technology. We quantify
blur (and therefore hover) by calculating a sharpness index
using local gradients along detected shape contours. Specif-
ically, we compute the Laplacian of the original grey image
masked by shape component contours rendered with a 20-
pixel thick stroke. From those gradients, we determine a
single measure of sharpness by calculating the standard
deviation within the contour mask. The sharpness index is
used to discard hands that are not completely touching the
surface and support transitions between casual resting poses
– distinguishing between fingers lightly curled when resting
and explicit menu triggers when hands are fully in contact.
Further below, we show how blurriness can also be used to
support explicit interactions.
Posture Matching
From the previous operations, we obtain an array of hand
contours. Each contour is classified as a specific hand pos-
ture in two steps, where the second step is optional if the
features of the first method are sufficient.
Convexity and Angle Matching
The convex hull and its convexity defects are computed for
each contour using techniques similar to mid-air hand and
fingertip tracking [8]. We use convexity defects along with
inter-finger angles as features to perform a first matching of
the hand shape. These generally suffice to identify open
hand postures with spread fingers, but postures such as
closed fists and vertical hand edges that exhibit no defects,
or only a small number of defects, remain ambiguous.
Moment Matching
To distinguish between shapes with similar convexity char-
acteristics, we perform an additional matching step based
on contour similarity. There are numerous methods to
measure similarity between shapes and polygons. We use
the OpenCV matchShape function based on Hu Moments
[21]. They are invariant to rotation, reflection and scale,
making them suitable for matching left and right hand pos-
tures of different sizes and orientations. The shapes are
matched against the templates obtained in the calibration.

EVALUATION: ALGORITHM ROBUSTNESS
In this evaluation, we measure algorithm recognition accu-
racy with a representative set of hand postures.
Hand Postures
Epps et al. [6] report which gestures people would adopt for
a range of atomic tabletop tasks, many of which were used
in research prototypes [20, 29, 30]. We use this as a starting
place for the seven postures we evaluate (see also Figure 1):
• Straightedge: a hand edge (appearing in previous work as

vertical hand [6, 30], karate chop [20, 30] and rail [29]).
• Corner: a hand edge with flexed fingers (appearing in

previous work as corner-shaped hand [30], L-shaped
hand [32], curved hand [6] and curved rail [29]).

• Fist: an upright clenched fist (appearing in previous work
as fist [6] and rock [29]).

• Palm: a flat palm with joined fingers (appearing in previ-
ous work as flat hand and horizontal hand [30]).

• PalmFingers: a flat palm with all spread fingers (appear-
ing in previous work as a spread hand [6] and used for
user identification in [24]).

• PalmThumb: a flat palm with abducted thumb (similar to
postures used for grasping gestures [8], but we are not
aware of it used for 2D shape-based input on tabletops).

• PalmThumbPinky: a flat palm with abducted thumb and
little finger (a new posture that we introduce).

Participants and Apparatus
We recruited 15 volunteers (12 males and 3 females, aver-
age age 28.2 years old). All were right-handed and used
mobile touch devices on a daily basis. Eight participants
also had some experience with digital tabletops. Those
participants also completed a second study described later
to evaluate qualitative aspects of widgets enabled by these
postures. In both studies, we used the Samsung SUR40
tabletop and the algorithm described above.
Protocol and Task
Each participant first completed the calibration step ex-
plained in the previous section. Then, they formed each of
the seven postures twice in all regions of a 3×2 grid divid-
ing the tabletop surface. An indication of the hand posture
to mimic was shown as an icon in a corner of the target
area. The participants were instructed to form the posture in
the designated region in a comfortable manner and they
could rest their arm on the surface if they wished. The grid
and emphasis on comfort allowed us to better capture dif-
ferent hand orientations and resting arm patterns.
Pilot tests showed long sleeves could confuse the algorithm
(example shown in Figure 4). Ten people wore shirts with
long sleeves, therefore we asked all participants to first
perform the calibration and testing steps with their sleeves
rolled up. Then, the participants with long sleeves also
performed the testing step with sleeves rolled down.

Note that the algorithm did not run during this capture
phase, only raw images were collected for later analysis.
For all participants, we gathered 42 raw images for calibra-
tion (7 postures × 3 regions × 2 repetitions) and 84 raw
images for testing (7 postures × 6 regions × 2 repetitions).
For participants wearing long sleeves, we collected an addi-
tional 84 raw images.
Results

We processed images from the test sets against different
choices of calibration data. A match success was registered
if the correct shape had been recognised and a failure in all
other cases (no or wrongly recognised shape). Table 1

shows the recognition accuracies under different conditions
and Table 2 displays the confusion matrix between the
shapes for the worst case, that is, long sleeves with tem-
plates from other users.
Per-User Templates
Using templates from the same participant, the algorithm
achieves a mean accuracy of 91%. All palm-based postures
are above 96%, while Fist and Straightedge are less robust
at 76%. Corners have a recognition accuracy of 90%.
Other-User Templates
To evaluate the feasibility of using generic hand shape
templates for matching, we calculated accuracy rates for
each participant using combined templates from all other
participants. This reduces mean accuracy to 84%. All palm-
based postures are above 92% while Fist and Straightedge
are again the least robust at 55% and 86% respectively. We
attribute those differences to user-specific wrist orientations
and differences in applied pressure on finger contacts when
executing those poses. Depending on the size of the hand
and the way fingers are clenched, for some users, a
Straightedge can be mistakenly recognised as a Fist and
vice versa (see confusion matrix in Table 2).
Impact of Sleeves
To evaluate the effect of users wearing long sleeves, we
calculated accuracy rates for each participant, again using
per-user templates and combined templates from all other
participants. The average accuracy for long sleeves and per-
user templates falls by approximately 7% for both template
conditions, but this is primarily due to non-palm postures.
For other-user templates, the accuracy drop is similar. In
this worst case, Fist has a score of 43.6% and thus is not
properly detected more than half of the time.
Summary
Overall, per-user templates with no sleeves are preferred,
but other-user templates and sleeves are still practical for
palm-based postures. All palm-based postures accuracy
rates are above 90% regardless of template and sleeve con-
ditions. This suggests that those postures can likely be used
with a set of generic templates in application contexts,
where individual calibration is not possible or too cumber-
some, such as tabletops available in public environments.
SHAPE-BASED WIDGETS
We now explain how detected hand postures can form the
basis for locally triggered widgets, whose position, shape,
and parameters can adapt to the contour of the hand. More-
over, the convexity defects, the spikes and other geomet-
rical properties of the shape obtained in the detection phase
can also function as serviceable support points for the posi-
tioning and orientation of user interface elements. In partic-
ular, the region between the index finger and the thumb is a
good candidate for widget placement or anchoring, as it is
the largest space within the convex hull of the hand contour
and also lends itself to a pinching metaphor, according to
which users can virtually "hold" objects between their two
fingers. Furthermore, the thumb can serve as a moving

Figure 4. Example of an erroneously detected PalmThumb

shape because of a long sleeve introducing a convexity defect

Per-user
templates

Other-user
templates

Per-user
templates
w/ sleeves

Other-user
templates
w/ sleeves

Corner 89.9 80.5 80.6 70

Palm 99.2 95 95.6 90

PalmFingers 96.7 92.5 93.3 89.4

PalmPinkyThumb 100 100 100 100

PalmThumb 98.3 96.7 98.3 94.4

Straightedge 75.8 54.7 65 56.7

Fist 75.8 68.2 52. 8 43.6

AVERAGE 90.8 83.9 83.7 77.7

Table 1. Recognition accuracy (in %)

 C P PF PPT PT S F nvsd

Corner 70 0.2 0.2 8.5 8.1 9.8 2.4 0.7

Palm 0 90 0 0 4.4 0 5.6 0

PalmFingers 0 0 89.4 0 0 0 0 10.6

PalmPinkyThumb 0 0 0 100 0 0 0 0

PalmThumb 1.1 0 0.6 3.9 94.4 0 0 0

Straightedge 11.7 0 0 3.3 0 56.7 26.1 2.2

Fist 11.1 9.3 0 5.6 8.3 21.2 43.6 0.9

Table 2: Confusion matrix for the worst condition (long
sleeves with other user templates). Shape names have been
abbreviated in the column labels but are listed in the same

order. nvsd=no valid shape detected.

"needle" to control the size or an attribute of the widget.
The position of such a needle can easily be determined from
the outmost spike formed by the thumb in the detected
polygon.
We believe our hand shape polygons with identified hull
defects theoretically allow finer widget arrangement com-
pared to coarse ellipses [29] or techniques solely based on
finger input [1, 4, 10, 26] and provide robust positioning
anchors that are not readily available from continuous inter-
action paradigms based on physical models [32]. We pro-
vide examples of how those anchors can be used with con-
crete widgets below.
Posture-Widget Mappings
The above postures can be mapped to different types of
widgets depending on their shape and space created around
them. Examples of such associations are shown in Figure 1.
Depending on the application context and the role of the
hands in the target tasks, some mappings can be more judi-
cious than others. For instance, postures with abducted
index finger and thumb and hand edges with flexed fingers
lend themselves to widgets that can adapt or be modulated
by finger movements. The widgets associated with Palm-
Fingers, PalmThumb, PalmThumbPinky, and Corner illus-
trate examples of such components (Figure 1 and Figure 6).
Respectively, these are: a fan-shaped menu with adjustable
opening angle, where additional items can be displayed
beyond a particular threshold; a magic lens with controlla-
ble size or zoom level; an HSV colour wheel with modifia-
ble saturation value; and a radial gauge. In the first three
cases, the position or angle of the thumb adjusts a parameter
of the widget, while in the fourth example the position of
the gauge needle is determined by the angle formed by the
flexed fingers with respect to the edge of the palm. We

believe those interactions are intuitive and easy to execute
as they are mapped to natural movements of the hand and
leverage spatial memory for menu selection [26].
Application Context
We see the primary application context of our shape-based
widgets to be bimanual work settings derived from tradi-
tional tabletop or desktop activities, where the non-
dominant hand (NDH) lies on the surface while the domi-
nant hand (DH) executes the main task. Classic examples of
this bimanual division of labour in desktop work are draw-
ing and writing [11]. Thus, we would like our detectable
shapes and their associated menus to be actionable by
switching from casual hand-resting poses with relaxed
(lightly bent) fingers to specific taut postures near the user's
workspace (Figure 5). Those transitions may involve very
different postures or only small motions of the NDH, where
sometimes even a slight lateral movement of a single finger
suffices. We believe such a trigger mechanism is an inter-
esting alternative to other more active menu-calling meth-
ods involving dragging gestures [15, 17, 19, 34]. Dragging
is potentially problematic on friction-prone tabletop surfac-
es such as glass panes, so interactions with a low drag de-
mand are desirable. Furthermore, we feel that the DH mo-
mentarily leaving the workspace to select an item from a
menu activated or "held" by the NDH is an intuitive, even if
not necessarily efficient, gesture. We liken it to the painter
holding a palette in their NDH, while the brush held by the
DH from time to time moves away from the canvas to dip
into the colours of the palette before returning to the main
painting task. In contrast to NDH chords [2, 9, 28], we also
believe hand shape contains more information to be ex-
ploited for precise positioning and richer interaction.

Figure 6. Using the thumb to control a widget parameter. Top:

displaying further information about menu items. Bottom:
controlling the saturation value of a colour wheel. Visual feed-
back for the selected colour is a thickly stroked hand contour.

Figure 5. Transitioning from a relaxed pose of the non-

dominant hand on the tabletop surface to a menu-triggering
posture in a bimanual pen and touch context.

EVALUATION: USABILITY IN CONTEXT
The formal analysis in the first evaluation did not consider
errors emerging in the context of a real task, where the arm
rests on the surface and switches between various menu-
triggering postures. In pilot tests, we found that some
shapes are more prone to involuntarily activation during
casual interactions, especially those with few or no convexi-
ty defects, like Palm, Straightedge, and Fist. Furthermore,
the dominant hand pose when writing can sometimes be
misrecognised as a Corner posture. These observations,
combined with lower recognition accuracies for non-palm-
based shapes, suggest some postures may be unreliable
without additional filtering or input data if users may freely
rest their arms (potentially with long sleeves) and hands.
Therefore, we focus on the most accurately recognised
PalmThumb, PalmFingers and PalmThumbPinky postures
for further exploration and evaluation in a real application
context where arm-resting is permitted. The same 15 partic-
ipants took part in this second. Before running the actual
study, we let participants test a demo interface featuring all
supported postures and associated widgets shown in Figure
1. The goal of this study was to assess the general suitabil-
ity and viability of selected hand shapes as menu triggers.
We logged all actions and recorded possible mistakes or
errors through observation along with qualitative feedback
collected after the completion of the tasks.
Task
We chose a pen and touch drawing task, a classic example
of bimanual tabletop work. The task we asked participants
to execute was to roughly reproduce a series of four col-
oured sketches appearing in different areas of the work-
space using a minimal toolset consisting of two menus: a
colour wheel and a three-level fan menu to select stroke
widths, undo, redo actions and a delete mode (Figure 5
bottom). Menu items could be selected either using finger
touch or the pen. Visual feedback of selected ink or mode
properties was provided as coloured contours of the hand
and arm while touching the surface. The stroke colour and
thickness reflected the currently selected menu settings, as
illustrated in Figure 6 (bottom). Delete mode, when en-
gaged, was indicated by a dashed contour. The sketches to
reproduce were such that, to complete them, at least five
menu activations and six item selections were needed, ei-
ther to change the colour or the thickness of the stroke.
Protocol and Design
We conducted two different series of sketching tasks under
different shape-matching schemes and posture-widget asso-
ciations. Specifically, for one series (series A) we associat-
ed the colour wheel with PalmThumb and the tool menu
with a relaxed version of PalmThumbPinky, that is, we
allowed the ring finger to also be slightly abducted for the
menu to be triggered. The shapes were recognised by the
full algorithm described above, i.e. using the two shape-
matching methods and with the user-specific templates
obtained from the first part of the study. For the other series
(series B), the colour wheel was to be triggered with Palm-

Fingers and the tool menu with relaxed PalmThumbPinky.
Since those postures involve at least two convexity defects,
detection, here, was handled only using the method based
on angle and defects matching. We were curious to see if
those features would suffice to ensure a smooth experience
with no or few false positives. Note that in both cases, users
could switch between the two different postures with a
simple abduction/adduction movement of a finger only: the
little finger for a switch between PalmThumb and relaxed
PalmThumbPinky and the index finger to change between
relaxed PalmThumbPinky and PalmFingers. Moving the
thumb was also possible in both cases to change the bright-
ness of the current colour selection in the wheel.
Participants performed the tasks with both series. The order
of the series and their association with each drawing model
were counterbalanced.
Results
Overall, participants could easily trigger and use the colour
wheel and the tool menu. Table 3 summarises the average
number of menu invocations, menu item selections and
errors that participants made in the two series.

 Series A Series B

Avg. Menu Invocations 23.9 (SD=3) 25.1 (SD=3.5)

Avg. Item Selections 78.4 (SD=26.8) 72 (SD=15.8)

Avg. Invocation Errors 3.5 (SD=1.5) 2.7 (SD=1.7)

Table 3. Average menu invocations, item selections and invo-
cation errors for the two sketching series

Errors
The menu invocation errors represent instances where users
did not obtain the expected menu or a menu wrongly ap-
peared due to misrecognitions or hand postures not being
correctly executed (as observed by the study supervisor). In
other words, errors include both false negatives and posi-
tives as they often occurred together. Indeed, we observed
that most mistakes happened when a particular finger was
not joined tightly enough to the others and thus, with the
noise in the raw image data, caused the recognition algo-
rithm to oscillate around the dividing threshold between the
two menu signatures, which made the widgets appear in
rapid successions. Participants were quick to react when
they noticed that behaviour, and adjusted their finger posi-
tion accordingly so that the desired menu was displayed in a
stable manner. For most participants, this adjustment was
only a matter of adopting the right habit, but, despite our
efforts to relax some of the postures to allow for more flex-
ibility, for three people, it was more difficult to keep fingers
together or to spread them sufficiently wide apart in order
to form the correct hand shape that would generate the
required number of convexity defects. Conversely, some
participants were much suppler and could extend their
thumb very far, enabling wider ranges of angle-based adap-
tations between the index finger and the thumb.

Usage Pattern
Because the sketches were designed to require relatively
frequent tool or colour changes, all participants mostly kept
a menu hand posture active at all times and only four of
them occasionally relaxed their hand or collapsed their
fingers to make menus disappear.
Regarding the preferred switching method using the little
finger or the index finger, 11 participants preferred the
latter and 4 the former. Switching between the two types of
menu using the index finger was generally perceived as
being easier and more intuitive but people also remarked
that it sometimes affected interaction with widgets that
appeared within the index-thumb area. Conversely, chang-
ing menus with the little finger was deemed slightly more
difficult but it had the advantage of being clearly separated
from the menu display zone.
Regarding the finger motion itself, the majority of partici-
pants performed switches by abducting and adducting the
required finger, but two participants found out they could
also change menus by simply lifting the required finger.
This gesture caused a convexity defect to disappear and
thus trigger the other menu. Of course, keeping a finger
raised while the rest of the hand is pressed flat on the sur-
face for an extended period of time causes discomfort and
thus, such poses are only viable for temporary activations.
Continuing with the subject of muscular strain, four partici-
pants said that it was a little tiring to keep the palm down
with all fingers spread for an extended period. This is not
required by the interaction design, however, since menus
can be triggered only when they are needed and the hand
relaxed when not (Figure 5).
An interesting behaviour that we observed with three partic-
ipants is that they would summon the colour wheel in the
vicinity of the model sketch to be able to closely compare
and match the colour that needed to be selected. While this
type of operation is certainly possible with any movable or
in-place menu, we believe that our widget-calling tech-
niques are particularly suited for local placements and
toolglass-like interactions [3], as users immediately know
where and how they can expect widgets to appear when
they place their hand at the desired location on the display.
Recall
Another comment that we received from our participants is
that remembering which menu is activated by which finger
position can be difficult when not familiar with the pos-
tures. Three people expressed that they would rather have
had two markedly different postures, for example, a Palm
and a StraightEdge to make the switching motion more
obvious and thus cognitively more explicit. Posture-Tool
associations are a matter of design choice, however, and
widgets can be mapped to different shapes depending on
user preferences and application context. If desired, very
different postures can be chosen so that clearer separations
exist between shape triggers in order to make them easier to
remember, but at the cost of additional physical effort.

DISCUSSION
Our results can be summarised as design recommendations:
• Palm-based whole-hand postures are more robust as

shape-based triggers than postures that generate a smaller
or thinner handprint. They are less user-dependent and
less prone to misdetections due to long sleeves and im-
properly rejected arm contact shapes. Therefore, we rec-
ommend they be considered first for hand shape-based
interaction vocabularies. Careful consideration for possi-
ble dexterity and fatigue issues should be given.

• The more convexity defects the hand shape exhibits, the
easier it is to identify using only convexity and angle
matching, relying less on user-specific shape templates.
Thus, postures such as PalmFingers and Palm-
ThumbPinky are preferred when users cannot calibrate,
such as public contexts.

• Due to differences in finger articulation skills, it is wise
to relax posture requirements for a single widget trigger,
especially one or two non-thumb finger abductions.

• Fingers, especially thumbs, can be used as moving nee-
dles to adapt or set widget parameters. The achievable
scope is however very user-specific, as it depends on the
extent of the joints' flexion and extension ranges. We
suggest using either discrete switches or continuous map-
pings across short articulation ranges (similar to thumb
controls used on gripped tablets [7]). When using such
designs, potential conflicts with other finger-based pos-
tures should also be taken into consideration.

ADVANCED INTERACTIONS USING HOVER DETECTION
With minor refinements to our sharpness index algorithm,
we can expand hand contact shape interaction to support
explicit hover-based input.
Hover Detection for Proximity
Discrete approximations of hand hover can be obtained by
using the sharpness index as an estimate of height. Ideally,
we would like to have a hover state for each of our detected
hand pose, but we found that it was not possible to obtain
clear contours and convexity defects while the hand is
above the surface (Figure 7 left). In practice, we can only
define a general hover state by finding the right sharpness
index threshold. This hover state can be used to trigger a

Figure 7. Left: hovering hand blurry image. Right: help guide

revealed with a hand held for a moment above the surface.

help guide for novices revealing which hand shape sum-
mons which widget (Figure 7 right).
Hover Detection for Shear and Tilt
When a palm is tilted or shear forces applied, the blurriness
of the hand shape has a distinct pattern with sharp disconti-
nuities on one side and dim contours on the other. The dif-
ference between gradients applied to each side of the hand
contour can be used to detect tilt direction.

Figure 8. Tilting the palm to control a four-way direction

widget. The portion of the hand pressing hard on the surface
produces a sharp contour in that area of the contact shape,

while the opposite region appears blurry.

Our algorithm can be extended to compute multiple local
sharpness indices around the shape contour to estimate the
amount of pressure exerted at those regions. This theoreti-
cally offers more flexibility for generic shapes than tech-
niques to detect finger angles based on ellipses [33] or fin-
gers [4, 13]. Probably the best posture to demonstrate this
capability is Palm. In this pose, four zones corresponding to
tilting or applied pressure can be defined for left, right, top
and bottom directions. By measuring the differences be-
tween opposing indices, the tilt direction of the hand can be
determined and used to control a navigation widget (Figure
8).
CONCLUSION AND FUTURE WORK
We described a generalised, reproducible computer vision
algorithm to recognise hand contact shapes where arms can
rest on the surface. We showed how hand postures can
enable a variety of control menu and tool widgets well
suited to bimanual tasks, where the non-dominant hand
summons widgets and triggers modes to set the context for
dominant hand input. Our evaluation of the detection accu-
racy and the performance of selected widgets in a realistic
application provided us with valuable insights into contact
shape-based interaction. Our main finding is that palm-
based postures with spread fingers are most reliable, but
user-specific articulatory issues are important to consider.
As future work, the accuracy of non-palm shapes could
perhaps be improved by including texture features to further
differentiate similar contour geometries. Our algorithm does
not directly recognise hand poses when fingers are detected
as separate blobs, such as during a grabbing motion. By
tuning the hover and binarisation thresholds and training on
those poses, we believe our method can be extended, which
would further expand the range of the interaction vocabu-

lary. To further increase the overall recognition precision
and support the robust classification of even more postures,
a machine-learning approach might be worth considering,
especially as powerful deep-learning toolkits are becoming
available. Finally, the potential for proximity, pressure, and
tilt detection also warrant more detailed investigations.
We hope our work provides a practical tool, ideas, and
insights for researchers and designers interested in hand
contact shape-based interaction.
REFERENCES
1. Bailly, G., Demeure, A., Lecolinet, E. and Nigay, L.

MultiTouch menu (MTM). In Proc. IHM 2008, 165-
168.

2. Bailly, G., Müller, J. and Lecolinet, E. Design and
evaluation of finger-count interaction: Combining
multitouch gestures and menus. Int. Jour. of Human-
Computer Studies, 70, 10 (2012), 673-689.

3. Bier, E. A., Stone, M. C., Pier, K., Buxton, W. and
DeRose, T. D. Toolglass and magic lenses: the see-
through interface. In Proc. SIGGRAPH '93, 73-80.

4. Brandl, P., Leitner, J., Seifried, T., Haller, M., Doray,
B. and To, P. Occlusion-aware menu design for digital
tabletops. In Proc. CHI EA 2009, 3223-3228.

5. Chen, X. A., Schwarz, J., Harrison, C., Mankoff, J. and
Hudson, S. E. Air+touch: interweaving touch & in-air
gestures. In Proc. UIST 2014, 519-525.

6. Epps, J., Lichman, S. and Wu, M. A study of hand
shape use in tabletop gesture interaction. In Proc. CHI
EA 2006, 748-753.

7. Foucault, C., Micaux, M., Bonnet, D. and Beaudouin-
Lafon, M. SPad: a bimanual interaction technique for
productivity applications on multi-touch tablets. In
Proc. CHI EA 2014, 1879-1884.

8. Frati, V. and Prattichizzo, D. Using Kinect for hand
tracking and rendering in wearable haptics. In Proc.
WHC 2011, 317-321.

9. Ghomi, E., Huot, S., Bau, O., Beaudouin-Lafon, M.
and Mackay, W. E. Arpège: learning multitouch chord
gestures vocabularies. In Proc. ITS 2013, 209-218.

10. Gu, J., Han, J. and Lee, G. HandCall: Calling a Tool by
a Hand Gesture on the Tabletop. In Proc. DIS 2012.

11. Guiard, Y. Asymmetric division of labor in human
skilled bimanual action: the kinematic chain as a
model. Journal of Motor Behavior, 19, 4 (1987), 486-
517.

12. Harrison, C., Xiao, R., Schwarz, J. and Hudson, S. E.
TouchTools: leveraging familiarity and skill with
physical tools to augment touch interaction. In Proc.
CHI 2014, 2913-2916.

13. Heo, S. and Lee, G. Indirect shear force estimation for
multi-point shear force operations. In CHI 2013, 281-
284.

14. Hinckley, K., Heo, S., Pahud, M., Holz, C., Benko, H.,
Sellen, A., Banks, R., O'Hara, K., Smyth, G. and
Buxton, W. Pre-Touch Sensing for Mobile Interaction.
In Proc. CHI 2016, 2869-2881.

15. Knies, R. In-Place: Interacting with Large Displays.
Reporting on research by Pahud, M., Hinckley, K., and
Buxton, B. TechNet Inside Microsoft Research Blog
Post. 04.10.2012.
https://blogs.technet.microsoft.com/inside_microsoft_r
esearch/2012/10/04/in-place-interacting-with-large-
displays/

16. Koura, S., Suo, S., Kimura, A., Shibata, F. and Tamura,
H. Amazing forearm as an innovative interaction
device and data storage on tabletop display. In Proc.
ITS 2012, 383-386.

17. Kurtenbach, G. P. The design and evaluation of
marking menus. PhD Thesis, University of Toronto,
1993.

18. Le, K.-D., Paknezhad, M., Woźniak, P. W., Azh, M.,
Kasparavičiūtė, G., Fjeld, M., Zhao, S. and Brown, M.
S. Towards Leaning Aware Interaction with Multitouch
Tabletops. In Proc. NordiCHI '16, 1-4.

19. Luo, Y. and Vogel, D. Pin-and-Cross: A Unimanual
Multitouch Technique Combining Static Touches with
Crossing Selection. In Proc. UIST 2015, 323-332.

20. Matulic, F. and Norrie, M. Pen and Touch Gestural
Environment for Document Editing on Interactive
Tabletops. In Proc. ITS 2013, 41-50.

21. Ming-Kuei, H. Visual pattern recognition by moment
invariants. IEEE Trans. Inf. Theory, 8, 2 (1962), 179-
187.

22. Moghaddam, A. B., Svendsen, J., Tory, M. and Albu,
A. B. Integrating touch and near touch interactions for
information visualizations. In Proc. CHI EA 2011,
2347-2352.

23. Pyryeskin, D., Hancock, M. and Hoey, J. Extending
interactions into hoverspace using reflected light. In
Proc. ITS 2011, 262-263.

24. Schmidt, D., Chong, M. K. and Gellersen, H.
HandsDown: hand-contour-based user identification

for interactive surfaces. In Proc. NordiCHI 2010, 432-
441.

25. Schwarz, J., Xiao, R., Mankoff, J., Hudson, S. E. and
Harrison, C. Probabilistic palm rejection using
spatiotemporal touch features and iterative
classification. In Proc. CHI 2014, 2009-2012.

26. Uddin, M. S., Gutwin, C. and Lafreniere, B. HandMark
Menus: Rapid Command Selection and Large
Command Sets on Multi-Touch Displays. In Proc. CHI
2016, 5836-5848.

27. Vogel, D. and Casiez, G. Hand occlusion on a multi-
touch tabletop. In Proc. CHI 2012, 2307-2316.

28. Westerman, W. Hand tracking, finger identification,
and chordic manipulation on a multi-touch surface.
PhD Thesis, University of Delaware, 1999.

29. Wigdor, D., Benko, H., Pella, J., Lombardo, J. and
Williams, S. Rock & rails: extending multi-touch
interactions with shape gestures to enable precise
spatial manipulations. In Proc. CHI 2011, 1581-1590.

30. Wu, M. and Balakrishnan, R. Multi-finger and whole
hand gestural interaction techniques for multi-user
tabletop displays. In Proc. UIST 2003, 193-202.

31. Wu, M., Chia, S., Ryall, K., Forlines, C. and
Balakrishnan, R. Gesture registration, relaxation, and
reuse for multi-point direct-touch surfaces. In Proc.
TABLETOP 2006, 185-192.

32. Xiang, C., Wilson, A. D., Balakrishnan, R., Hinckley,
K. and Hudson, S. E. ShapeTouch: Leveraging contact
shape on interactive surfaces. In Proc. TABLETOP
2008, 129-136.

33. Xiao, R., Schwarz, J. and Harrison, C. Estimating 3D
Finger Angle on Commodity Touchscreens. In Proc.
ITS 2015, 47-50.

34. Yoshikawa, T., Shizuki, B. and Tanaka, J.
HandyWidgets: local widgets pulled-out from hands. In
Proc. ITS 2012, 197-200.

35. Zhang, Z., Zhang, F., Chen, H., Liu, J., Wang, H. and
Dai, G. Left and right hand distinction for multi-touch
tabletop interactions. In Proc. IUI 2014, 47-56.

	Hand Contact Shape Recognition for Posture-Based Tabletop Widgets and Interaction
	ABSTRACT
	Author Keywords

	INTRODUCTION
	Related Work
	Hand contact shape Recognition
	Calibration
	Capture
	Pre-processing
	Hand Isolation and Forearm Rejection
	Hover Filtering
	Posture Matching
	Convexity and Angle Matching
	Moment Matching

	Evaluation: Algorithm Robustness
	Hand Postures
	Participants and Apparatus
	Protocol and Task
	Results
	Per-User Templates
	Other-User Templates
	Impact of Sleeves
	Summary

	Shape-based widgets
	Posture-Widget Mappings
	Application Context

	Evaluation: USability in Context
	Task
	Protocol and Design
	Results
	Errors
	Usage Pattern
	Recall

	Discussion
	Advanced interactions using Hover Detection
	Hover Detection for Proximity
	Hover Detection for Shear and Tilt

	Conclusion and future work
	REFERENCES

