
To appear in an IEEE VGTC sponsored conference proceedings

Interactive Near-Field Illumination for Photorealistic Augmented Reality
on Mobile Devices

Kai Rohmer∗

Computational Visualistics
University of Magdeburg

Wolfgang Büschel†

Interactive Media Lab
Technical University of Dresden

Raimund Dachselt‡

Interactive Media Lab
Technical University of Dresden

Thorsten Grosch§

Computational Visualistics
University of Magdeburg

ABSTRACT

Mobile devices become more and more important today, especially
for augmented reality (AR) applications in which the camera of the
mobile device acts like a window into the mixed reality world. Up
to now, no photorealistic augmentation is possible since the com-
putational power of the mobile devices is still too weak. Even a
streaming solution from a stationary PC would cause a latency that
affects user interactions considerably. Therefore, we introduce a
differential illumination method that allows for a consistent illumi-
nation of the inserted virtual objects on mobile devices, avoiding a
delay. The necessary computation effort is shared between a sta-
tionary PC and the mobile devices to make use of the capacities
available on both sides. The method is designed such that only a
minimum amount of data has to be transferred asynchronously be-
tween the stationary PC and one or multiple mobile devices. This
allows for an interactive illumination of virtual objects with a con-
sistent appearance under both temporally and spatially varying real
illumination conditions. To describe the complex near-field illumi-
nation in an indoor scenario, multiple HDR video cameras are used
to capture the illumination from multiple directions. In this way,
sources of illumination can be considered that are not directly visi-
ble to the mobile device because of occlusions and the limited field
of view of built-in cameras.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism H.5.1 [Information Interfaces and Represen-
tation]: Artificial, Augmented and Virtual Realities

1 INTRODUCTION

Mobile devices like smartphones and tablet PCs are part of our ev-
eryday life. In combination with the integrated camera, the mo-
bile device can act like a window into an augmented real world
[11]. When virtual objects are inserted, their appearance is often
inconsistent with the real environment, mainly because of wrong
illumination. So far, a consistent illumination that handles both dy-
namic scenes and dynamic lighting conditions eluded the mobile
platforms. Even though many sophisticated illumination methods
allow for plausible global illumination at interactive rates on non-
mobile platforms, several applications would benefit from such a
mobile system. For instance, applications in interior planning and
architecture can be enhanced by convincing in-place visualization
of the designer’s vision. Bringing back virtual versions of lost or
destroyed artifacts would open up new possibilities in the field of
cultural heritage. Mobile AR can also be used in movie productions
or in the process of creating a theater play by providing previews of
the final scene and the created mood to the director at early stages.

∗e-mail: kai.rohmer@isg.cs.ovgu.de
†e-mail: bueschel@acm.org
‡e-mail: dachselt@acm.org
§e-mail: grosch@isg.cs.ovgu.de

Furthermore, it is relevant for mobile AR games, as users expect
more and more enhanced graphics.

We primarily aim for applications like the augmentation of real
prototypes, for which a correct illumination at any place in the
scene is required and a perceptively plausible illumination is not
sufficient.

To accomplish this, three problems need to be addressed:

• Mobile devices, such as tablets, do not yet have the computa-
tional resources necessary for computing interactive global illu-
mination on their own.

• Streaming the rendered images from a powerful desktop PC
causes a latency that is too high to meet the requirements for
seamlessly integrated virtual objects, especially during user in-
teractions and for multiple simultaneous views.

• Real lighting conditions in the dynamic scene need to be cap-
tured reliably and limitations caused by occlusions and the lim-
ited field of view have to be overcome.

In this paper, we present a novel, distributed illumination approach
for AR with consistent illumination of virtual objects with direct
light, indirect light (color bleeding) and shadows of primary and
strong secondary lights. Due to the limitations in computational
power of the mobile device and the lack of important information
(see Figure 2, left), we split the illumination into two parts: In the
first part, the existing radiance values are captured by a number
of HDR video cameras that are placed at different locations in the
scene. This acquisition process and the extraction of parameters
for our lighting model is executed on a stationary PC. Based on the
extracted information, we display augmentations with consistent il-
lumination at interactive frame rate on the mobile device, as shown

Figure 1: The tablet camera shows the real world, augmented by
virtual objects with consistent illumination, displayed at 27 fps. By
using a tracked device, the user can move the tablet freely in the
augmented real world.

1

To appear in an IEEE VGTC sponsored conference proceedings

HDR video cameras
with �sh-eye lenses

mobile
devices

 PC
(stationary)

WiFi

optical tracking

Figure 2: Left: The camera image of a mobile device does not see
the important light sources required for a consistent illumination of a
virtual object. Right: Our hardware setup.

in Figure 1. To avoid a potential bottleneck of the bandwidth be-
tween PC and mobile devices, our illumination model reduces the
amount of transferred data that is required for the reconstruction of
the environmental lighting condition and the illumination of virtual
objects. In summary, our main contributions are:

1. A new distributed approach for interactive Augmented Reality
under dynamic real-world environment lighting,

2. A lighting model for correct near-field illumination with com-
pact parametrization to be transferred to one or multiple display
devices.

2 PREVIOUS WORK

AR with Consistent Illumination The first work for AR with
consistent illumination was presented by Fournier et al. [12] who
invented the differential rendering technique. Further extensions
exist for hierarchical radiosity [10] and final gathering [36]. De-
bevec [8] introduced the high dynamic range (HDR) light probe
to capture the distant real illumination. A similar approach was
presented by Sato et al. [43] using a fish-eye lens. Grosch [17] in-
troduced differential photon mapping to correctly display reflecting
and refracting objects and their changes in illumination. To capture
the existing near-field illumination, Corsini et al. [6] used a pair of
light probes to estimate the distance of light sources. Using a mov-
able HDR camera with a light probe, Unger et al. [45] captured the
complete near-field illumination inside a small region. Even if no
information of the surrounding illumination is available, a plausible
augmentation can be implemented, as shown by Karsch et al. [30]
for legacy photographs. A list of AR illumination techniques can
be found in Jacobs and Loscos [25].

Interactive AR with Consistent Illumination For an interactive
setting, the first works for AR with consistent illumination were
presented by Kanbara and Yokoya [29], and Agusanto et al. [2].
They assume a distant and constant illumination, captured by a light
probe. Several approaches simply define the existing illumination
manually, e.g. Haller et al. [22] and Pessoa et al. [40]. Gibson and
Murta [15] demonstrated how to implement differential rendering
on the GPU for distant illumination. This was further extended in
[14] for the augmentation of pictures of real rooms, taking near-
field illumination into account by combining point lights and an
irradiance volume. Grosch [18] showed how this technique can
be further improved for the augmentation in a panoramic image
viewer. For temporally varying illumination, Havran et al. [23] in-
troduced a sampling approach for an HDR video camera. In Korn
et al. [34], two such HDR video cameras were used to estimate the
distance of moving light sources. In Grosch et al. [19], a near-field
illumination approach was presented for augmentations under day-
light in a real room. The idea of differential rendering has been

applied to several interactive global illumination methods, includ-
ing instant radiosity [32, 33], progressive path tracing [28] and light
propagation volumes [13]. Kan and Kaufmann [27] presented a par-
tial implementation of differential photon mapping, running at near-
interactive frame rates on the GPU. Assuming a single dominant
light direction, Nowrouzezahrai et al. [39] introduced a real-time
light factorization method that allows soft and hard virtual shad-
ows. Instead of special equipment, an approximate reconstruction
of the environmental light is possible from simple objects. This
can be a diffuse sphere [3], a special shading probe [5] or only the
user’s hand [46]. Madsen and Lal [37] demonstrated a photomet-
ric reconstruction from shadows, Jachnik et al. [24] used a specular
surface. A first approach to augment live images based on geom-
etry captured by a RGB-D camera was presented by Lensing and
Broll [35]. The captured depth image was used here for a fast il-
lumination based only on screen-space information. Meilland et
al. [38] reconstructed both 3D geometry and HDR radiance val-
ues based on a moving RGB-D camera. For static illumination,
a real-time rendering can be performed with correct near-field re-
flections and shadows of extracted light sources. Gruber et al. [21]
demonstrated a probeless approach that displays a visually plausi-
ble augmentation. Here, a low-frequency environment map is re-
constructed from the illumination of diffuse objects that allows soft
shadows between virtual and real objects [20]. Recently, Csongei
et al. [7] presented a progressive path tracing solution for AR on a
mobile phone based on a pre-recorded environment map. Here, the
simulation is distributed between a stationary PC and the mobile
device.

We observe that so far there is no solution for augmented reality
with consistent, spatially and temporally varying illumination on
a mobile device. The first reason is the low computational power
of current mobile devices. Secondly, none of the existing methods
addresses an on-line capture process of the spatially and temporally
varying near-field illumination. Our solution solves these problems.

3 OVERVIEW

Our goal is the consistent illumination of virtual objects on mo-
bile devices in a real environment. Multiple users should be able
to interact in the real world with photorealistic augmentations. We
thereby focus on an indoor scenario with a difficult, spatially and
temporally varying near-field illumination (Figure 2). This requires
the knowledge of the plenoptic function [1], which includes the real
radiance values at any point in the scene, viewed from any direction
at any time. Based on this information, an interactive global illumi-
nation simulation can be computed.

3.1 Hardware Setup and Precomputations
Our hardware setup is shown in Figure 2 (right):

Multiple HDR video cameras are connected to a stationary PC.
The cameras are equipped with fish-eye lenses and placed in the
scene, such that all regions are visible in at least one camera image.
To enable the measurement of radiance values on real environment
surfaces, each camera has to be calibrated in a pre-process. Intrin-
sic parameters are estimated by using the OCamCalib Toolbox1 by
Davide Scaramuzza and stored in a lookup table to map the cap-
tured image on a perfect equidistant projection. To reconstruct the
extrinsic parameters, we simply capture a tracked checker board
and reconstruct the position of the camera. To acquire absolute real
radiance values instead of arbitrary pixel colors, a photometric cali-
bration is necessary. Therefore, we reconstruct the camera response
curve using pfstools2, leading to linear relative radiance values af-
ter applying the inverted response curve. By capturing images of an
XRite ColorChecker3 and a least-squares approximation, we obtain

1https://sites.google.com/site/scarabotix/ocamcalib-toolbox
2http://resources.mpi-inf.mpg.de/hdr/calibration/pfs.html
3http://xritephoto.com/ph product overview.aspx?id=1192

2

https://sites.google.com/site/scarabotix/ocamcalib-toolbox
http://resources.mpi-inf.mpg.de/hdr/calibration/pfs.html
http://xritephoto.com/ph_product_overview.aspx?id=1192

To appear in an IEEE VGTC sponsored conference proceedings

Stationary PC Tablet PCs
WiFi

HDR
Camera 1

WiFi
SH

Coefficients

Augmented
ImageSplitRadiance

Atlas

Indirect Radiance
Atlas SH Projection Low Frequency

Illumination
Camera
Image

Differential
Rendering

Scene
Geometry

…

Projection Tracking
Position &

CubeMap

Scene Geometry
& Virtual Object

HDR
Camera N Area Lights

Direct Radiance
Atlas Clustering High Frequency

Illumination

Orientation

Sampling

Figure 3: The whole pipeline for distributed illumination.

a matrix that maps the measured linear radiances onto absolute ra-
diances known for each tile of the checker. A similar process is
repeated for each mobile device. Additionally, we estimate another
matrix to compensate the color shift introduced by the display. The
current position and orientation of the mobile device are captured
at runtime. For communication between the stationary PC, mobile
devices and the tracking system we use WiFi.

In a pre-process, the geometry and the diffuse materials of the
real environment are reconstructed manually using a common DCC
tool. The resulting model is a very coarse representation with a
simple uv-mapping that is later used as texture atlas (Sec. 3.3).

3.2 Distributed Illumination

Given the HDR information – real radiance at each position of the
environment – in combination with the 3D model, we aim for a
consistent illumination of virtual objects. Based on measured radi-
ance values of the real environment, there are different choices for
interactive global illumination [42]. The obvious solution is to use
one of these methods to render on a static machine and stream the
resulting images to all mobile devices. We do not follow this idea
for several reasons: First of all, we need a different image for each
mobile device which can lead to a performance break-down on the
server side in case of many mobile devices. The main difficulty in
direct user interaction is the in-time update of the displayed aug-
mented scene. This is because there is a latency in sending notifi-
cations of user input to the stationary PC, as well as waiting for the
generation, compression, and transmission of the rendered image
that is eventually combined with the camera image. We therefore
developed an illumination model that distributes the computation
between the static PC and the mobile devices.

One option for interactive global illumination is the extraction
of a set of virtual point lights (VPLs) [31]. This allows for a com-
plete illumination from all directions with a shadow cast by each
VPL. For good quality, at least a few hundred VPLs are required.
Unfortunately, only a few VPLs are possible on a mobile device
at interactive frame rates. On the other hand, precomputed radi-
ance transfer (PRT) [44] techniques can be used, which allow real-
time illumination with natural light. These techniques work well
for low-frequency illumination and diffuse materials. This is espe-
cially useful for indirect illumination, such as color bleeding from
real to virtual objects. However, high-frequency illumination and
hard shadows are difficult to achieve. To solve this problem, we
developed a hybrid solution that combines the best of both worlds.
Our solution is based on the observation that most typical settings
consist of a few bright light sources and large low-frequency indi-
rect light regions. We follow the idea introduced in [14] and split
the incoming light into a high-frequency and a low-frequency part.
There are two reasons for this: First, it allows for an efficient il-
lumination with the desired effects: The high-frequency illumina-
tion and shadows can be displayed with a small set of VPLs, while
the low-frequency illumination such as color bleeding can be im-

plemented with PRT. The second reason is that this combination
requires only a small amount of data that needs to be transferred
between the stationary PC and the mobile devices, enabling inter-
active update rates.

3.3 Pipeline Overview

The whole pipeline from capturing images of the real world to dis-
playing the augmented image using the distributed illumination is
summarized in Figure 3: The HDR video cameras with fish-eye
lenses capture the existing radiance values. On the stationary PC,
each image is then projected onto the reconstructed 3D geome-
try using a hemispherical projection and shadow mapping. The
recorded radiance values are stored in a radiance atlas which de-
scribes a 1:1 mapping of 3D scene points to atlas texels (Sec. 4.1).
To capture the illumination at as many surface positions as possible,
we use multiple cameras. Areas seen by multiple cameras therefore
receive multiple measurements. For an illumination at both inter-
active speed and high quality on a mobile device, we proceed as
follows: The radiance atlas is split into two parts: A direct (high-
frequency) radiance atlas and an indirect (low-frequency) radiance
atlas (Sec. 4.2). The direct radiance atlas is transformed into a small
set of area lights (Sec. 4.3), which is transferred to the mobile de-
vice. For the indirect radiance, PRT is used for the illumination.
Thus, the indirect light is transformed into spherical harmonic (SH)
basis (Sec. 4.4) and the resulting coefficients are transferred to the
tablet PC as well. Based on this information, the illumination of
virtual objects can be computed quickly on the tablet PC without
streaming any images. Using differential rendering, the virtual ob-
ject can then be inserted into the tablet camera image with correct
appearance and shadows (Sec. 5).

4 SERVER COMPUTATIONS

We explain the server computations of our method based on a sim-
ple synthetic example shown in Figure 4 (left).

4.1 Acquiring the Radiance Atlas

We use a texture atlas to record radiance values for all points in
the scene. To update the current lighting conditions, each HDR
camera permanently projects its radiance values into the atlas. This
is implemented by rendering the reconstructed scene with a vertex
shader that replaces the vertex position by its texture coordinate and
outputs the world position along with the vertex normal to the pixel
shader stage. There, we project the world position of each frag-
ment into the camera image space to get the corresponding image
coordinate. Subsequently, we sample the camera image and a previ-
ously generated artificial depth image at this location to decide the
visibility of the currently processed texel in the manner of shadow
mapping (see Figure 4). Since triangles not facing the camera can-
not be seen, they are rejected during the rendering into the atlas,
depending on the dot product of normal and view direction. When

3

To appear in an IEEE VGTC sponsored conference proceedings

Scene with Cameras Camera Images Virtual Depth
Renderings

Projection into
the Atlas

Figure 4: Acquiring the radiance atlas for a simple synthetic scene
with three HDR cameras (left). Each HDR camera records a fish-eye
image of the scene. Additionally, a depth buffer is rendered for each
camera using the reconstructed scene. Using the depth buffer for
visibility tests, the camera image is then projected into the radiance
atlas (right). Note that each camera has only a partial information of
the total scene radiance.

multiple cameras see the same region, we compute a weighted aver-
age of the camera images. To account for the low resolution in the
border regions of a fish-eye projection, we use the angle to the main
camera direction as a weighting. Since each texel in the atlas can
become an indirect light source, we store both position and normal
to correctly place and rotate the light. For photometric correctness,
each texel stores both the radiance value and the spatially varying
world-space area of the texel. To compensate artifacts at texture
seams we, apply a dilation over the 8 neighbors with a range of 2
texels.

4.2 Splitting the Radiance Atlas
To determine the radiance L at a point x, seen from direction ω , we
integrate over the hemisphere Ω to solve the rendering equation [26]

L(x,ω) =
∫

Ω

fr(x,ωi,ω) Lin(x,ωi) cosθi dωi (1)

whereas Lin is the incoming radiance from direction ωi, fr is the
bidirectional reflectance distribution function (BRDF), and θi is the
angle between ωi and the surface normal at x. For efficiency rea-
sons, we separate the reflected radiance in direct radiance LDir and
indirect radiance LInd

L(x,ω) = LDir(x,ω)+LInd(x,ω) (2)

whereas LDir corresponds to the direct radiance caused by light
sources and strong indirect lights and LInd is the remaining indi-
rect radiance. This means that we decide for each direction of the
hemisphere around x whether it corresponds to incoming direct ra-
diance ΩDir or incoming indirect radiance ΩInd :

LDir(x,ω) =
∫

ΩDir

fr(x,ωi,ω) Lin(x,ωi) cosθi dωi (3)

LInd(x,ω) =
∫

ΩInd

fr(x,ωi,ω) Lin(x,ωi) cosθi dωi (4)

To implement this separation, we split the radiance atlas in a direct
radiance atlas and an indirect radiance atlas. For this, we deter-
mine a threshold value: Texels in the atlas with a radiance larger
than the threshold are assigned to the direct radiance atlas, the other
texels are assigned to the indirect radiance atlas. To allow for vary-
ing lighting conditions, this threshold is adjusted dynamically. For
this purpose, we provide a user-defined ratio that decides how much
of the total amount of light in the scene should be assigned to the
direct light. To determine the threshold value, we first compute the
histogram of all radiant intensity values in the atlas. We then accu-
mulate the radiant intensity values from high to low until the given

Radiance Atlas Direct Radiance Indirect Radiance

Figure 5: The radiance atlas (left) is split in direct radiance (middle)
and indirect radiance (right). Note that the direct radiance atlas con-
tains both the light sources and bright indirect regions. The separa-
tion is computed per color channel to allow sources in monochrome
regions that would have a low gray scale brightness.

ratio is reached. In this way, we always extract a certain percentage
of either direct lights or strong indirect lights. Figure 5 shows an
example for this separation. In our examples, we used 75−98 % of
the total radiant intensity for the direct light.

4.3 Finding Direct Light Sources
After splitting the atlas, the direct radiance at x is computed by
summing up all NDir texels in the direct radiance atlas:

LDir(x,ω)≈
NDir

∑
i=1

fr(x,ωi,ω) Li V (x,ωi) cosθi
∆Ai cosθ

r2 (5)

whereas Li and ∆Ai are the radiance and area of texel i, and V is the
binary visibility function. The distance between sender and receiver
is r and the angle to the sender normal is θ . To simplify the compu-
tation, we now group the NDir texels from the direct radiance atlas
into a low number of j = 1..M clusters. In accordance with [9] we
denote the clusters as virtual area lights (VALs). The unoccluded
direct radiance at x due to a VAL j is then given by

LVAL j (x,ω) = fr(x,ω j,ω)
I j cosθ j cosθ

r2 (6)

whereas the radiant intensity I j of VAL j is computed by summing
up all N j texels assigned to this cluster:

I j =
N j

∑
k=1

Lk ∆Ak (7)

The direct radiance can therefore be approximated by summing up
all M VALs:

LDir(x,ω)≈
M

∑
j=1

LVAL j (x,ω)V (x,ω j) (8)

Note that for M = NDir, this yields Eq. (5) without V (x,ωi).
To avoid flickering, these extracted virtual area lights have to

be coherent under temporally varying illumination. To accomplish
this, we follow the clustering method described in [9]: First, we
use importance sampling by a prefix sum (scan) and an inverse cu-
mulative density function to generate a set of samples in the direct
radiance atlas. Secondly, we use k-means clustering with positions
and normals as weight to generate clusters of the samples. To cor-
rectly compute the radiant intensity I j of each VAL using Eq. (7),
each texel in the direct radiance atlas is assigned to its closest clus-
ter center, using the same distance metric. Finally, the data to be
transferred to the mobile device for each VAL is the following: Po-
sition (12 bytes), normal (4 bytes, compressed), radiant intensity
(12 bytes) and area (4 bytes). In total, these are only 32 bytes per

4

To appear in an IEEE VGTC sponsored conference proceedings

Importance Sampling k-means Clustering Direct Illumination

Figure 6: VAL extraction for direct light: Samples are placed on the
direct radiance atlas (left). Using k-means clustering, these samples
are grouped in M clusters (middle). Each texel is assigned to the
closest cluster center. Integration over each cluster leads to M VALs
that are used for direct illumination of a virtual object (right).

VAL. The total number of VALs is a time-quality tradeoff, in our
experiments we use 8 ≤ M ≤ 64.

Note that we only use the direct radiance atlas for the VAL ex-
traction and ignore the current position of the virtual objects. As
an alternative, an environment map could be rendered from the vir-
tual object center position. The drawback of this option is that we
might miss some important light sources which are not visible from
the center of the virtual object. Additionally, the global VAL selec-
tion achieves a better temporal coherence, and in the case of multi-
ple virtual objects, only one set of VALs is used which follows the
concept of a consistent global light model.

4.4 Compressing Indirect Light
For the indirect light LInd , we assume that the remaining illumina-
tion in the indirect radiance atlas is of low frequency. In this case, a
compression using spherical harmonics (SH) can be applied to the
environment light around the virtual object. For a diffuse virtual
object with reflection coefficient ρ , it is sufficient to use only the
first K = 9 basis functions for an illumination with a barely visi-
ble error, as shown in [41, 44]. Given a vertex v at position x, the
indirect radiance is computed as a simple dot product:

LInd(x,ω)≈ ρ

π

K−1

∑
k=0

CkCvk (9)

whereas the coefficients Ck and Cvk are obtained by a projection
onto the SH basis function Yk.

Ck =
∫

ΩInd

Lin(x,ωi) Yk(ωi) dωi (10)

Cvk =
∫

Ω

V (x,ωi) cosθi Yk(ωi) dωi (11)

The Ck coefficients can be interpreted as the amount of light that is
incident from all directions of the surrounding. Corresponding to
that, the Cvk coefficients at a vertex v describe a set of directions
from which incident light is not occluded. Due to the orthogonal-
ity of the SH basis functions, the dot product of both is then the
amount of incident unoccluded light from all directions at the ver-
tex. The coefficients Cvk of the transfer function V cosθi are static,
so they can be precomputed and stored per vertex at the virtual ob-
ject. In contrast, the coefficients Ck of the environment map Lin
change whenever the incoming illumination changes. We therefore
render a low-resolution (6× 32× 32) cube map from the virtual
object’s position with the indirect radiance atlas as texture of the
surrounding scene. Then, this is projected to the first nine spher-
ical harmonic basis functions Yk and the resulting coefficients Ck
are transferred to the mobile device. Using RGB float values, these
are only 9× 3× 4 = 108 bytes in total. In case of multiple mobile
devices, the same coefficients can be reused. In case of multiple

O
ne

 S
in

gl
e

Vr
itu

al
 O

bj
ec

t
M

ul
tip

le

Vi
rtu

al
 O

bj
ec

ts

Indirect Light Cube Map Visualized SH Compression Indirect Illumination

Figure 7: To estimate the indirect illumination of a virtual object, we
first render a cube map with the indirect radiances from the object
center (left). This is projected into the first nine SH basis functions
(center) which allows a real-time illumination of a virtual object (right).
The second row shows multiple virtual objects with mutual interreflec-
tions, like the blue color bleeding from DRAGON to BUNNY.

virtual objects, this process is repeated for each object. The com-
putation cost for this step is small (see Sec. 6).

In fact, we are able to take account of indirect light transmis-
sion between virtual objects with a small overhead by including the
other virtual objects during the indirect light estimation of the one
that is updated. This is shown in Figure 7 (bottom) for the BUNNY
interacting with a blue DRAGON. To keep the additional effort low,
the objects are illuminated by PRT, too. Therefore, we render an-
other cube map containing direct and indirect light to derive SH-
coefficients with the correct amount of light. In summary, we are
rendering 2n cube maps, each containing n− 1 virtual objects and
the reconstructed scene in order to achieve additional indirect light
transmission between n virtual objects. Note that these interreflec-
tions cover b−1 bounces for objects that are static for b iterations.

5 RENDERING ON THE CLIENT

Due to the described separation of illumination, the final image gen-
eration on the client only requires lightweight operations for a mo-
bile device with limited rendering capabilities: For each VAL, we
compute the direct radiance and visibility using shadow mapping
Eq. (8). This is added to the indirect illumination which is com-
puted per vertex by applying Eq. (9) using the stored coefficients
Cvk and the transferred coefficients Ck. To display virtual shadows
with correct brightness, we use the differential rendering technique
introduced by Gibson et al. [14] and subtract direct radiance in the
virtual shadows.

To improve the rendering performance, we use a tile-based de-
ferred shading based on Andersson [4]. Compared to simple for-
ward rendering and non-tiled deferred rendering, a tile-based ap-
proach reduces overdraws to a minimum because each final screen
texel is processed only once. Additionally, the G-Buffer (see Fig-
ure 8) needs to be read only once, which improves performance
since memory accesses are expensive.

In the first pass, the reconstructed and the virtual scene are ren-
dered into one G-Buffer containing projection space depth, world
space normal, diffuse reflection coefficients, and indirect radiance
as well as flags to distinguish virtual from real objects (see Fig-
ure 8). To avoid unnecessary geometry processing, we calculate the
indirect radiance for virtual objects by PRT in the vertex shader.
Hence, we need to render the scene only once, except for the
shadow map generation described later in this section.

The second pass handles light calculations and the composition
of the augmented image in one single compute shader program.

5

To appear in an IEEE VGTC sponsored conference proceedings

Depth Normal + Flags Diffuse Indirect Radiance
D32 R10G10B10A2 R8G8B8A8 R8G8B8A8

Figure 8: G-Buffer: an off-screen buffer containing geometry and
material information of the reconstructed and virtual scene per pixel.

Thus, the screen is divided into tiles of 8× 8 texels – which per-
formed best in our tests – that are processed by a thread group of
64 threads per tile. Each thread then executes the following steps:

1. Read the background image and G-Buffer data for the corre-
sponding texel and construct the view frustum around the tile.
Near and far plane are determined by the minimum and maxi-
mum occurring depth value within the tile.

2. Cull the VAL assigned to the thread if the view frustum is en-
tirely in the negative hemisphere of the VAL. Due to the Lam-
bertian emission of the VALs, such a VAL does not contribute
to the illumination of the tile. Because of the group size, 64
VALs can be treated simultaneously. If there are more VALs
than threads per tile, this process is performed in a loop. Lights
not culled are added to a shared list, containing m ≤ M visible
VALs.

3. Perform visibility and shading operations to illuminate the sur-
face position x at the texel by all remaining m VALs in the group
shared VAL list. For differential rendering, we accumulate the
radiance LVAL j of all VALs depending on the texels’ flags. For
texels marked virtual we store radiance that is not shadowed,
neither by real nor by virtual objects. For non-virtual texels, we
store radiance that is shadowed by virtual but not by real ob-
jects. In its essence, we estimate the light that should be missing
because of new virtual shadows.

4. Combine the results of step 3, the background color, and the in-
direct radiance using Eq. (12) for texels marked as virtual and
Eq. (13) otherwise. The visibility at x from VAL j in the recon-
structed scene is referred to as V j, where V̂ j is the visibility in
the virtual scene.

L = LInd +
m

∑
j=1

V j ·V̂ j ·LVAL j (12)

L = Lbackground −
m

∑
j=1

V j · (1−V̂ j) ·LVAL j (13)

As described above, we use two shadow maps per VAL to cover
shadows from reconstructed and virtual objects [33, 15]. This is
necessary to prevent virtual objects from casting shadows through
real objects (see Figure 9, left). Using only one shadow map con-
taining the closest distance in light space can lead to correct shad-
ows (green). But without the distance of the closest reconstructed
object we are not able to identify the correct shadow receiver and
add wrong shadows (red) on every further surface. Hence, we need
2M shadow maps for direct illumination with M VALs, which is
not feasible for large M in real-time. To reduce the geometry pro-
cessing overhead we update 16 shadow maps at once by using a ge-
ometry shader for duplicating the primitives and rendering to mul-
tiple viewports simultaneously. Therefore, we organize our shadow
buffer in a texture array containing 4× 4 shadow maps per slice
(see Figure 9, right). To adjust to the narrow time budget, we up-
date only one slice of the virtual shadow buffer and one slice of
the reconstructed shadows per frame. The update order for virtual

Figure 9: Two shadow maps per VAL are required to avoid double
shadowing from virtual objects (dashed contour) in regions that are
shadowed in the real environment.

shadows follows round robin, but currently updated VALs are pre-
ferred, while reconstructed shadows are only updated after receiv-
ing new VAL positions. To obtain good shadows with low resolu-
tion we construct each shadow frustum to closely fit all visible vir-
tual objects and use this frustum for both virtual and reconstructed
shadows maps. The reconstructed geometry between light and near
plane is projected onto the near plane.

6 RESULTS

In this section, we will report the results that are obtained by our
distributed approach for augmenting live camera streams with vir-
tual objects illuminated by the dynamically captured real world en-
vironment. All performance experiments for rendering were run on
a Microsoft Surface Pro with Intel i5-3317U CPU, 1.7 GHz, 4 GB
RAM and Intel HD Graphics 4000. The stationary PC used for im-
age acquisition and calculation of the light model parameters was
equipped with an AMD Phenom II X4 965 CPU, 3.4 GHz, 8 GB
RAM and an NVIDIA GeForce 580 GTX.

For comparison in quality and performance we decided to evalu-
ate the synthetic CORNELL SCENE used in Sec. 4 to avoid inaccu-
racies caused by the camera sensors and lenses as well as during the
reconstruction process. Nevertheless, results of real world scenar-
ios are demonstrated in the later part of this section. The scene was
designed to be as simple as possible while showing the most im-
portant interactions between real and virtual objects. In particular,
there are shadows from virtual on real objects and vice versa, virtual
objects occluding real objects and vice versa, and there is a strong
indirect light that causes color bleeding. The radiance of the small
light at the ceiling is 15 W/srm2 and thereby 5 times brighter than
the window with 3 W/srm2. The scene is augmented by a BUNNY
with 2.5k triangles and the resolution of the G-Buffer is 960×540,
where not otherwise stated.

6.1 Comparison
To evaluate our approach we compare it with a standard VPL-based
lighting, PRT and different combinations of light clustering and
splitting into direct and indirect light. To achieve fair results, we
used the same renderer with all optimizations by tiled rendering and
simplifications during shadow map updates for rendering VPLs as
we do in our case. For PRT we were also using the G-Buffer to treat
occlusions between real and virtual objects as well as the same cal-
culation of indirect light used in our approach, but we disabled all
direct light calculations and shadow map updates since they cannot
be used with PRT. Figure 10 shows results of the different meth-
ods depending on the number of direct light sources. For the syn-
thetic scene we created a path traced reference image, depicted in
the lower right corner. Above this ground truth solution the result
of simple PRT without any directional lights is shown. In the first
row, the classic Monte Carlo-based VPL lighting is depicted. To
generate VPLs, the radiance atlas was sampled using the gray scale
intensity as density function p. While the position is directly read

6

To appear in an IEEE VGTC sponsored conference proceedings

from the atlas at sample position s, the radiant intensity of the re-
sulting VPL is calculated by Eq. (14), where NV PL is the number of
VPLs (assuming the surface is diffuse).

IV PL =
1

NV PL
· Is

ps
(14)

The second row combines the classic VPL lighting with our light
separation. Instead of sampling the complete radiance atlas, we just
sample the direct light atlas (see Figure 6, left). The indirect light is
compressed to spherical harmonics as we do in our approach. The
third row shows clustered VPLs without light separation. In this
case, we apply our direct light clustering step to the classical VPL
method. Here we draw 4k samples, cluster them by k-Means and
integrate the radiance atlas to result in one VPL for each cluster, as
described in Sec. 4.3. The last row contains the final results of our
approach with light separation and clustering.

6.2 Evaluation
In comparison with the ground truth image, the result of the PRT
method shows significant differences. Besides the lack of shadows,
there is a visible shift in the color of shading. The environment
coefficients used for this image were derived from a cube map ren-
dered at the object center from where the bright red wall is only
slightly visible. This explains the cold tone of the image and why
PRT alone is not a good choice for near-field illumination, even
though the measured timings are best.

Evaluating the classical VPL approach confirms the expected be-
havior known from instant radiosity implementations [31, 32, 33].
A large number of lights is required to converge against the correct
solution. We stopped at 512 sources, which produced a result close
to the reference image in 503 ms.

By separating high-frequency from low-frequency light the re-
gions to sample for VPL generation become smaller. In combina-
tion with PRT-based low-frequency illumination, the visual quality
of the results increases especially for a low number of light sources.
Because of the smaller sample regions, the point lights concentrate
in bright areas, which leads to more plausible shadows as second
benefit. The additional computation cost for PRT lighting is con-
stant and rather low compared to the direct lighting. Note that these
two methods without light clustering are not coherent over time for
smaller light counts. This results in a distracting flickering and is
not suitable in most scenarios. To provide an impression, we refer
to the accompanying video.

The experiments with clustered VPLs showed an improved spa-
tial coherence but did not lead to a temporal coherent illumination
because of the large cluster sizes that need to cover the whole radi-
ance atlas. For the client, there is no difference to classical VPLs
in terms of calculations for lighting, which was confirmed by equal
timings.

The results of our approach, depicted in the last row, contain
features of both improvements. The separation of the radiance at-
las leads to smaller areas to be sampled, hence the light sources
concentrate in the brightest regions. The additional clustering leads
to coherent light positions and thus coherent virtual shadows. It
also allowed us to integrate the area per light to be approximated as
disc. Hence, virtual objects close to light sources do not show the
singularities of classic point lights. Considering the measured tim-
ings, there is no difference compared with the approach in row two,
since there is no difference in rendering on the client side. Com-
paring the images created with varying numbers of VALs reveals
only slight differences in the shading of the virtual object. The
most obvious distinction can be found in the quality of the shad-
ows, especially at the transition from the virtual to the real shadow
cast by the yellow board. A drawback of our approach can be ob-
served in the shadowed region of the BUNNY which is too bright
in comparison with the reference image. One reason for that is the

Table 1: Timing breakdown in ms for the stationary PC at an atlas
resolution of 1024× 1024, 4 HDR cameras, 4k direct light samples
and 16 clusters with 20 iterations per clustering step.

Update Atlas (for dynamic scenes)
Position, normals and area 0.5 ms
Dilatation 1.33 ms
Acquiring the Radiance Atlas (* per camera)
Acquire color image * 2.35 ms
Render depth image * 0.26 ms
Project into atlas * 0.44 ms
Combine radiance atlas 0.58 ms
Splitting the Radiance Atlas
Find separating threshold 9.1 ms
Split into direct and indirect atlas 0.53 ms
Finding Direct Light Sources
Sampling (4k Samples) 6.67 ms
k-Means clustering (M=16) 7.3 ms
Integrating cluster radiances 17.5 ms

limited number of SH coefficients Ck and the lack of details in the
reconstructed indirect light. Another influencing factor is that the
cube map is only valid for the center of the virtual object. Other
locations on the virtual object, e.g. below the yellow board, have a
slightly different environment illumination. This problem could be
addressed by evaluating the indirect light at multiple locations and
interpolating the SH coefficients per vertex during rendering which
leads to an approach similar to irradiance volumes [16]. Finally,
there is another aspect that contributes to a too bright indirect light.
The indirect radiance estimation at the center of the virtual object
by cube map rasterization does not consider the shadows cast by
any virtual objects. However, we are currently restricted to diffuse
materials because of the diffuse PRT, which is also a limitation of
the presented approach.

6.3 Light Extraction Performance
All tasks executed by the server are implemented on the GPU, but
they are not well optimized in terms of performance, since the re-
sults are transmitted asynchronously and do not affect the rendering
performance discussed in the next paragraph. However, an interac-
tive update rate improves the visual quality of the rendering while
moving virtual objects and reduces the time that is needed to re-
spond to changes in the dynamic environment. Table 1 contains
the timings measured with our current implementation. The single
steps are not executed in the listed order. For example, the first
block is only required if the tracking system reported a moving real
object. The operations concerning the camera images of the sec-
ond block are applied only if a camera captured and transferred a
new image during the last iteration. The latter is influenced by the
type and number of cameras used, their resolution, and the available
bandwidth for the transfer to the GPU.

The time to update the indirect light coefficients depends on the
number of virtual objects. Figure 11 illustrates the increasing effort
with growing number of virtual objects. As described in Sec. 4.4,
we include the other virtual objects to take account of indirect trans-
mission between the objects. Hence, the time required for render-
ing a cube map increases with the number of objects while the dura-
tion for compressing the cube maps into SH-coefficients is constant.
Note that the time to update the indirect light without interaction be-
tween virtual objects would be equal to the duration measured for
one virtual object. The rendering of an extra cube map with direct
and indirect light is not necessary in this case.

6.4 Rendering Performance
As noted in Sec. 5, the tile-based approach reduces the number of
geometry processing passes, overdraw, and G-Buffer accesses per
texel. Nevertheless, the G-Buffer resolution is the most dominant

7

To appear in an IEEE VGTC sponsored conference proceedings

cl
as

si
ca

l V
PL

s
cl

us
te

re
d

VP
Ls

ou
rs

95

%
 c

lu
st

er
ed

 V
AL

s
+

5%
 P

R
T

PR
T

on
ly

8 16 32 64 256 512

gr
ou

nd
 tr

ut
h

Lights
se

pa
ra

te
d

Li
gh

t
95

%
 c

la
ss

ic
al

 V
PL

s
+

5%
 P

R
T

25.7 ms 81.5 ms 260 ms 503 ms36.8 ms 51 ms

26.3 ms 82.2 ms 261 ms 504 ms37.5 ms 52 ms

25.8 ms 82 ms 7.1 ms36.4 ms 51.4 ms

26.4 ms 82.2 ms37 ms 51.8 ms 192 s

Figure 10: Comparison with classical VPL lighting, PRT and combinations

0 0.5 1 1.5 2 2.5 3

8

4

3

2

1

Update Duration per Object (ms)

stcejb
O lautriV

Cube Map Ind.

Projection Ind.

Cube Map Dir. + Ind.

Projection Dir. + Ind.

Figure 11: Timings for updating the indirect light coefficients per ob-
ject. Measured in the CORNELL SCENE with multiple virtual BUNNIES.

factor on the rendering performance. Figure 12 illustrates the in-
creasing time per frame with growing light count and resolution. In
consequence of the tiled rendering the timings grow almost linearly
with the number of rendered tiles.

In Figure 13 the frame timings are broken down to five steps. The
acquisition of the background image, the rendering of reconstructed
shadows, and the generation of the G-Buffer are independent of
the number of VALs. The update of 16 virtual shadow maps takes
2.2 ms if 16 or more lights are present. The largest part of the time
is spent on calculating the direct illumination and visibility. After a
constant offset, the required time increases linearly with the number
of lights.

Because of the deferred rendering, the impact of geometry com-
plexity on performance is assumed to be low as each model has to
be rendered only once to generate the G-Buffer. The result of the
evaluation with virtual models of different complexity is depicted in

0

50

100

150

200

250

300

8 16 32 64

)s
m(e

miT e
marF

Direct Light VALs

1920 x 1080

1440 x 810

1280 x 720

960 x 540

640 x 360

Figure 12: Influence of the G-Buffer resolution on the frame time.
Timings measured for augmenting the CORNELL SCENE with the vir-
tual BUNNY.

Figure 14. As anticipated, the time required to create the G-Buffer
increases with the number of primitives, up to 10 ms for 260k trian-
gles. The other step that needs to render the virtual geometry is the
update of the virtual shadows. Since we are processing 16 shadow
maps per iteration, the duration grows exponentially up to 216 ms
for the largest model. Fortunately, this large number is not rele-
vant in practice, since low-poly models can be used for rendering
shadow maps of low resolution. Hence, a few hundred primitives
are sufficient for the 128× 128 shadow maps we used in our ex-
amples, and highly detailed models are only required during the
G-Buffer generation.

6.5 Real World Scenarios
To measure the real-world radiance values, we use Matrix Vision
mvBlueFOX-IGC200 HDR video cameras with 180 degrees fish-

8

To appear in an IEEE VGTC sponsored conference proceedings

0 10 20 30 40 50 60 70 80

8

16

32

64

Frame Time (ms)

sLAV thgiL tceri
D

Acquire Background

Reconstructed Shadows

Virtual Shadows

Generate G-Buffer

Tiled Lighting

Figure 13: Timings with respect to the number of VALs measured
for augmenting the CORNELL SCENE with the virtual BUNNY broken
down and accumulated.

0 40 80 120 160 200 240

2.5k

28.1k

42.5k

260k

Frame Time (ms)

selgnairT lautriV

Acquire Background
Reconstructed Shadows
Virtual Shadows
Generate G-Buffer
Tiled Lighting

Figure 14: Timings with respect to vertex count measured for aug-
menting the CORNELL SCENE with different virtual models and 16
lights broken down and accumulated.

eye lenses. For tracking, we use OptiTrack with 12 infrared cam-
eras, capturing a range of approximately 3×2 meters.

Figure 1 shows the consistent appearance of a 3D-printed and a
virtual BUNNY side-by-side. We added a real and a virtual color
checker to show the quality of the reproduced colors. To verify
the correct capture process of the near-field illumination, we place
the BUNNY close to a local light source and a strong indirect light,
as shown in Figure 15. An interactive session from the accom-
panying video is shown in Figure 16, demonstrating both tempo-
rally and spatially varying illumination. The performance in real
and synthetic scenes has been very similar in all our experiments.
This is because the cost for transferring the mobile camera image to
VRAM and the cost for rendering the synthetic background image
compensate each other.

7 CONCLUSIONS AND FUTURE WORK

We demonstrated that augmented reality with consistent illumina-
tion is possible on current mobile devices at interactive frame rates.
To achieve this, we developed a lighting method that shares the
computation effort among a stationary PC and the participating mo-
bile device. The amount of data to be exchanged between both is
reduced, avoiding a bottleneck in transmission due to limited band-
width. Multiple mobile devices are supported without additional
overhead in terms of lighting calculation and transmission since the

Figure 15: A virtual BUNNY in front of its real counterpart, illuminated
by a local light source (top) and a strong indirect light (bottom). In
both cases, the sender becomes invisible after user movement.

Figure 16: Moving tracked objects: Initial configuration (top left),
user switches on the light and rotates the BUNNY at 27 fps (top right),
red color bleeding disappears when the box is moved away (bottom
left) and direct light changes after light movement (bottom right).

parameters of the light model are valid for all devices and can be
broadcasted. We captured the near-field illumination of indoor sce-
narios with multiple HDR video cameras and use this as informa-
tion for illumination of the virtual objects. The virtual objects can
be moved freely with a consistent illumination at any position and
adapt to temporal changes in the incident illumination, although the
sources of light are not visible to the tablet camera.

At present, we place the HDR cameras manually such that all
relevant regions are visible in at least one of the cameras. However,
if there are regions not visible to any camera, some of the illumina-
tion might be missing. To overcome this problem, we evaluate a dy-
namic, tracked HDR camera that can be moved to such invisible re-
gions. This additional information also improves the quality of the
captured light sources, since a few static cameras are not enough to
capture a goniometric diagram of a complex light source. The same
applies to the capture process of real objects with non-diffuse ma-
terials. Since portable 3D sensors are available, dynamic capturing
of the geometry and materials is also interesting [35].

Currently, we do not include the indirect illumination which is
reflected from the virtual object to the real scene. This could be
added by analyzing the radiance distribution on the virtual object
and the placement of virtual light sources onto the virtual object.
Due to missing high-resolution environment images on the tablet,
we cannot display highly glossy virtual objects. Instead of reflec-
tions of the real environment, only the highlights of the extracted
area lights would be visible. Making more advanced BRDFs possi-
ble is also a topic for further investigation. To improve the shadow
quality, a soft shadow could be displayed for each area light, similar
to [9].

Our method supports manipulation of virtual objects with cor-
rect illumination at interactive rates, but (as visible in the accompa-
nying video) the update rates of the direct light sources are lower
since they are only updated after a complete iteration of the server
pipeline. Additionally, we neither predict the VAL positions on
the client side nor blend between updated and former VALs, which
would both hide this latency.

Note that our hardware setup allows for working in a dynamic
environment with moving real objects and under changing light
conditions. For static environments one could use only the mobile
devices to capture the surrounding in a pre-process and track visual
features for estimating the device position. The presented approach
works in this setting without the complex hardware setup, too.

ACKNOWLEDGEMENTS

This work was sponsored by grant no. GR 3833/2-1 and DA
1319/2-1 of the German Research Foundation (DFG).

9

To appear in an IEEE VGTC sponsored conference proceedings

REFERENCES

[1] E. H. Adelson and J. R. Bergen. The plenoptic function and the ele-
ments of early vision. In Computational Models of Visual Processing,
pages 3–20. MIT Press, Cambridge, MA, 1991.

[2] K. Agusanto, L. Li, Z. Chuangui, and N. W. Sing. Photorealistic ren-
dering for augmented reality using environment illumination. In IEEE
and ACM International Symposium on Mixed and Augmented Reality
(ISMAR), pages 208–216, 2003.

[3] M. Aittala. Inverse lighting and photorealistic rendering for aug-
mented reality. The Visual Computer, 26(6-8):669–678, 2010.

[4] J. Andersson. Parallel graphics in frostbite - current & future. SIG-
GRAPH Course: Beyond Programmable Shading, New Orleans,
USA, 2009.

[5] D. A. Calian, K. Mitchell, D. Nowrouzezahrai, and J. Kautz. The
shading probe: Fast appearance acquisition for mobile AR. Proceed-
ings of ACM SIGGRAPH Asia Technical Briefs, 32(6), 2013.

[6] M. Corsini, M. Callieri, and P. Cignoni. Stereo light probe. Comput.
Graph. Forum, 27(2):291–300, 2008.

[7] M. Csongei, L. Hoang, C. Sandor, and Y. B. Lee. Global illumination
for augmented reality on mobile phones (Poster). In IEEE VR, 2014.

[8] P. Debevec. Rendering synthetic objects into real scenes: Bridging tra-
ditional and image-based graphics with global illumination and high
dynamic range photography. In Proc. SIGGRAPH ’98, pages 189–
198, 1998.

[9] Z. Dong, T. Grosch, T. Ritschel, J. Kautz, and H.-P. Seidel. Real-time
indirect illumination with clustered visibility. In Vision, Modeling,
and Visualization Workshop, 2009.

[10] G. Drettakis, L. Robert, and S. Bougnoux. Interactive common il-
lumination for computer augmented reality. In Eighth Eurographics
Workshop on Rendering, pages 45–56, 1997.

[11] G. W. Fitzmaurice, S. Zhai, and M. H. Chignell. Virtual reality for
palmtop computers. ACM Trans. Inf. Syst., 11(3):197–218, 1993.

[12] A. Fournier, A. Gunavan, and C. Romanzin. Common illumination
between real and computer generated scenes. In Proc. of Graphics
Interface, pages 254–262, 1993.

[13] T. A. Franke. Delta light propagation volumes for mixed reality. IEEE
International Symposium on Mixed and Augmented Reality (ISMAR),
2013.

[14] S. Gibson, J. Cook, T. Howard, and R. Hubbold. Rapid shadow gen-
eration in real-world lighting environments. In Eurographics Sympo-
sium on Rendering, pages 219–229, 2003.

[15] S. Gibson and A. Murta. Interactive rendering with real-world illu-
mination. In Eurographics Workshop on Rendering, pages 365–376,
2000.

[16] G. Greger, P. Shirley, P. M. Hubbard, and D. P. Greenberg. The irradi-
ance volume. IEEE Computer Graphics and Applications, 18(2):32–
43, 1998.

[17] T. Grosch. Differential photon mapping: Consistent augmentation of
photographs with correction of all light paths. In Eurographics 2005
Short Papers, Trinity College, Dublin, Ireland, 2005.

[18] T. Grosch. PanoAR: Interactive augmentation of omni-directional im-
ages with consistent lighting. In Mirage, Computer Vision / Computer
Graphics Collaboration Techniques and Applications, pages 25–34,
2005.

[19] T. Grosch, T. Eble, and S. Mueller. Consistent interactive augmen-
tation of live camera images with correct near-field illumination. In
ACM Symposium on Virtual Reality Software and Technology (VRST),
pages 125–132, 2007.

[20] L. Gruber, T. Langlotz, P. Sen, T. Hoellerer, and D. Schmalstieg. Ef-
ficient and robust radiance transfer for probeless photorealistic aug-
mented reality. In IEEE VR, pages 91–97, 2014.

[21] L. Gruber, T. Richter-Trummer, and D. Schmalstieg. Real-time pho-
tometric registration from arbitrary geometry. In IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), pages 119–
128, Washington, DC, USA, 2012.

[22] M. Haller, S. Drab, and W. Hartmann. A real-time shadow approach
for an augmented reality application using shadow volumes. In Proc.
Symp. on Virtual reality software and technology, pages 56–65, 2003.

[23] V. Havran, M. Smyk, G. Krawczyk, K. Myszkowski, and H.-P. Seidel.

Importance Sampling for Video Environment Maps. In Eurographics
Symposium on Rendering, pages 31–42, Konstanz, Germany, 2005.

[24] J. Jachnik, R. A. Newcombe, and A. J. Davison. Real-time surface
light-field capture for augmentation of planar specular surfaces. In
ISMAR, pages 91–97. IEEE Computer Society, 2012.

[25] K. Jacobs and C. Loscos. Classification of illumination methods for
mixed reality. Comput. Graph. Forum, 25(1):29–51, 2006.

[26] J. T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph.,
20(4):143–150, 1986.

[27] P. Kán and H. Kaufmann. High-quality reflections, refractions, and
caustics in augmented reality and their contribution to visual coher-
ence. In International Symposium on Mixed and Augmented Reality
(ISMAR), pages 99–108, 2012.

[28] P. Kán and H. Kaufmann. Differential progressive path tracing for
high-quality previsualization and relighting in augmented reality. In
G. Bebis, editor, ISVC 2013, Part II, LNCS 8034, pages 328–338.
Springer-Verlag Berlin Heidelberg, 2013.

[29] M. Kanbara and N. Yokoya. Geometric and photometric registration
for real-time augmented reality. In IEEE and ACM International Sym-
posium on Mixed and Augmented Reality (ISMAR), page 279, 2002.

[30] K. Karsch, V. Hedau, D. Forsyth, and D. Hoiem. Rendering syn-
thetic objects into legacy photographs. ACM Trans. Graph. (Proc.
SIGGRAPH Asia), 30(6):157:1–157:12, 2011.

[31] A. Keller. Instant Radiosity. In SIGGRAPH ’97, pages 49–56, 1997.
[32] M. Knecht, C. Traxler, O. Mattausch, W. Purgathofer, and M. Wim-

mer. Differential instant radiosity for mixed reality. In ISMAR ’10:
Proceedings of the 2010 9th IEEE International Symposium on Mixed
and Augmented Reality, 2010.

[33] M. Knecht, C. Traxler, O. Mattausch, and M. Wimmer. Reciprocal
shading for mixed reality. Comput. and Graph., 36(7):846–856, 2012.

[34] M. Korn, M. Stange, A. von Arb, L. Blum, M. Kreil, K. Kunze, J. An-
henn, T. Wallrath, and T. Grosch. Interactive augmentation of live
images using a HDR stereo camera. In Workshop Virtuelle und Erweit-
erte Realitaet der GI-Fachgruppe VR/AR, volume 3, pages 107–118,
2006.

[35] P. Lensing and W. Broll. Instant indirect illumination for dynamic
mixed reality scenes. 2012 IEEE International Symposium on Mixed
and Augmented Reality (ISMAR), 0:109–118, 2012.

[36] C. Loscos, M. Frasson, G. Drettakis, B. Walter, X. Granier, and
P. Poulin. Interactive virtual relighting and remodeling of real scenes.
In Tenth Eurographics Workshop on Rendering, pages 329–340, 1999.

[37] C. B. Madsen and B. B. Lal. Outdoor illumination estimation in image
sequences for augmented reality. In GRAPP, pages 129–139, 2011.

[38] M. Meilland, C. Barat, and A. Comport. 3D High Dynamic Range
Dense Visual SLAM and Its Application to Real-time Object Re-
lighting. In International Symposium on Mixed and Augmented Re-
ality (ISMAR), 2013.

[39] D. Nowrouzezahrai, S. Geiger, K. Mitchell, R. Sumner, W. Jarosz,
and M. Gross. Light factorization for mixed-frequency shadows in
augmented reality. In 10th IEEE International Symposium on Mixed
and Augmented Reality (Proceedings of ISMAR 2011), 2011.

[40] S. A. Pessoa, G. de S. Moura, J. P. S. M. Lima, V. Teichrieb, and
J. Kelner. Photorealistic rendering for augmented reality: A global
illumination and BRDF solution. In IEEE Virtual Reality Conference,
pages 3–10, Waltham, Massachusetts, USA, 2010.

[41] R. Ramamoorthi and P. Hanrahan. An efficient representation for ir-
radiance environment maps. In SIGGRAPH, pages 497–500, 2001.

[42] T. Ritschel, C. Dachsbacher, T. Grosch, and J. Kautz. The state of
the art in interactive global illumination. Computer Graphics Forum,
31(1):160–188, 2012.

[43] I. Sato, Y. Sato, and K. Ikeuchi. Acquiring a radiance distribution
to superimpose virtual objects onto a real scene. IEEE Trans. Vis.
Comput. Graph., 5(1):1–12, 1999.

[44] P.-P. J. Sloan, J. Kautz, and J. Snyder. Precomputed radiance transfer
for real-time rendering in dynamic, low-frequency lighting environ-
ments. ACM Trans. Graph., 21(3):527–536, 2002.

[45] J. Unger, S. Gustavson, P. Larsson, and A. Ynnerman. Free form
incident light fields. Comput. Graph. Forum, 27(4):1293–1301, 2008.

[46] Y. Yao, H. Kawamura, and A. Kojima. The hand as a shading probe.
In ACM SIGGRAPH Posters, pages 108:1–108:1, 2013.

10

	Introduction
	Previous Work
	Overview
	Hardware Setup and Precomputations
	Distributed Illumination
	Pipeline Overview

	Server Computations
	Acquiring the Radiance Atlas
	Splitting the Radiance Atlas
	Finding Direct Light Sources
	Compressing Indirect Light

	Rendering on the Client
	Results
	Comparison
	Evaluation
	Light Extraction Performance
	Rendering Performance
	Real World Scenarios

	Conclusions and Future Work

