
Vistribute: Distributing Interactive Visualizations in
Dynamic Multi-Device Setups

Tom Horak

Interactive Media Lab
Technische Universität Dresden

Dresden, Germany
horakt@acm.org

Andreas Mathisen

Department of Computer Science
Aarhus University
Aarhus, Denmark
am@cs.au.dk

Clemens N. Klokmose

Digital Design & Information Studies
Aarhus University
Aarhus, Denmark

clemens@cavi.au.dk

Raimund Dachselt

Interactive Media Lab
Technische Universität Dresden

Dresden, Germany
dachselt@acm.org

Niklas Elmqvist

College of Information Studies
University of Maryland
College Park, MD, USA

elm@umd.edu

A B C

Automatic Distribution

Vistribute

Design Space
Interactive Visualizations &
Multi-Device Environments

6 Heuristics
for Deriving View-Sensitive

Distributions & Layouts

Figure 1: The Vistribute system: Based on a design space we derived six heuristics that can guide an automatic distribution of

visualizations in changing device setups, e.g., (a) dual desktop, (b) laptop and large display, or (c) mobile device ensemble.

ABSTRACT
WepresentVistribute, a framework for the automatic distribu-
tion of visualizations and UI components across multiple het-
erogeneous devices. Our framework consists of three parts:
(i) a design space considering properties and relationships
of interactive visualizations, devices, and user preferences
in multi-display environments; (ii) specific heuristics incor-
porating these dimensions for guiding the distribution for a
given interface and device ensemble; and (iii) a web-based im-
plementation instantiating these heuristics to automatically
generate a distribution as well as providing interaction mech-
anisms for user-defined adaptations. In contrast to existing
UI distribution systems, we are able to infer all required infor-
mation by analyzing the visualizations and devices without

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300846

relying on additional input provided by users or program-
mers. In a qualitative study, we let experts create their own
distributions and rate both other manual distributions and
our automatic ones. We found that all distributions provided
comparable quality, hence validating our framework.

CCS CONCEPTS
• Human-centered computing → User interface man-

agement systems; Visualization systems and tools; Visual-
ization theory, concepts and paradigms.

KEYWORDS
Distributed user interfaces, infovis, cross-device visualiza-
tion, cross-device interaction, multi-display environments.
ACM Reference Format:

Tom Horak, Andreas Mathisen, Clemens N. Klokmose, Raimund
Dachselt, and Niklas Elmqvist. 2019. Vistribute: Distributing Interac-
tive Visualizations in Dynamic Multi-Device Setups. In Proceedings
of the ACM SIGCHI Conference on Human Factors in Computing
Systems Proceedings (CHI 2019), May 4–9, 2019, Glasgow, Scotland,
UK. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3290605.3300846

1 INTRODUCTION
Advances in mobile computing have spawned a ubiquity of
networked digital devices in our everyday lives [9]. Such
devices are increasingly liberating office workers from the

https://doi.org/10.1145/3290605.3300846
https://doi.org/10.1145/3290605.3300846
https://doi.org/10.1145/3290605.3300846

bonds of their desks, allowing tasks to be distributed across
the day, continued in different contexts with different device
setups, and performedwith an ever-changing constellation of
participants [18, 28, 54]. Data analysis and sensemaking is no
different, but current practice rarely exploits the full potential
of cross-device interaction, instead merely using additional
devices to increase screen real estate [2, 3] or improve visi-
bility in multi-user settings [12]. Fully utilizing these ad-hoc
multi-device environments would enable analysts to seam-
lessly continue their data exploration throughout an entire
day across a plethora of devices, settings, and people [19]. For
example, consider an oncologist in a hospital using patient
tumor data to inform her practice (analyzing, e.g., tumor
growth rate, blood levels). The doctor may spend some time
on her morning commute to get up to speed (smartphone), in
her office to plan treatment (desktop and tablet), continuing
during a coffee break (laptop and phone) with a colleague
spontaneously joining after a while (adding a tablet), then at
a tumor board1 with other doctors (large displays, laptops,
and mobile devices), and finally in a treatment room consult-
ing the patient (tablet and large TV)—all without spending
time on manually setting up the interface. To our knowledge,
no existing data analysis framework exists that is capable of
dynamically and seamlessly adapting to such a multitude of
devices, settings, and collaborators.

To address this gap, we propose the Vistribute framework,
an automatic approach for distributing visualization inter-
faces across dynamic multi-device environments based on
view, data, and user properties. Unlike existing automatic
distribution mechanisms for general user interfaces, such as
AdaM [46], Vistribute uses in-depth information about views,
the data they visualize, and the tasks users want to perform
on them to optimize the layout. The framework consists of
a design space, a set of heuristics, and an example imple-
mentation. Our design space for cross-device visualization
draws on the literature as well as an analysis of existing visu-
alization interfaces, and explicitly considers dynamic factors
such as view properties and relationships, device properties
and the current device ensemble, as well as user preferences.
Using this design space, we propose several heuristics as
high-level constraints for distributing visualization views. Fi-
nally, our web-based implementation automatically collects
information about the devices, the dataset, and the visual-
izations to derive a suitable distribution. In addition to the
distribution itself, we enable users to adapt the interface
distribution according to their needs and preferences.

In summary, our paper presents the conceptual Vistribute
framework with the following contributions: (1) a design

1Tumor board meetings convene doctors with different specialties to discuss
cancer cases, share knowledge, and plan treatment.

space identifying important properties and relations for dis-
tributed visualization interfaces; (2) six heuristics guiding the
distribution process; (3) a web-based implementation as one
possible instance of the heuristics; and (4) a qualitative study
where experts manually created distributions and rated both
other manual distributions and our automatic distribution.

2 RELATEDWORK
Our work is located in the intersection of human-computer
interaction (HCI) and visualization research, straddling two
topics specifically: (i) multi-display setups in visual data
analysis and (ii) general HCI research on view distribution.

Visual Data Analysis in Multi-Display Environments
In recent years, the visualization community has intensified
their efforts in investigating analysis systems and visual-
izations that go “beyond the desktop” [38, 53]. While in-
corporating many different aspects (e.g., utilized modalities,
display technologies, or interaction styles), using multiple
displays in parallel is often one prominent characteristic of
these systems. Often, mobile devices are used as movable
containers for content, settings, or preferences [16, 26, 42].
This can allow for switching between working alone and
in concert [42], or having user-specific tools available on
hand [26, 61]. In this context, HCI research has also sug-
gested general cross-device interaction techniques for data
transfer [14, 36, 41, 59, 61].
Other literature focuses on specific device combinations.

Spindler et al. [60] as well as Kister et al. [32] used hand-
held displays in relation to a bigger context display (tabletop
and display wall, respectively) in order to show details and
alternative representations for a large visualization, while
Langner et al. [35] used smartphones to enable co-located
remote interaction inside a coordinated & multiple views
(CMV, [52]) application running on a display wall. With
Thaddeus, Wozniak et al. [62] applied these principles to
a smaller scale by using a spatially-aware smartphone for
probing data on a tablet. In VisTiles, Langner et al. [34] fo-
cussed on physical ad-hoc layouts with mobile devices (one
visualization per device) for data exploration.

While the presented concepts provide useful device com-
binations for specific visualizations or interaction styles, it
remains unclear how these can be generalized for any situa-
tion and device constellation. However, as a study by Plank
et al. [47] showed, this is a crucial aspect for multi-device
setups: they found that participants did not take advantage
of having multiple tablets during sensemaking tasks, even
with optimized tasks. As their setup had multiple restrictions
(e.g., one view per device, fixed device pairs), it appears that
having a proactive and flexible interface is a gatekeeper for
unleashing the full potential of multi-device setups.

Input Accuracy

OwnershipScreen EstateDevice Type

Physical Size

OrientationPostureUser Distance

de
vic

e
co

nte
xt

Device Roles

Combination

Default Size

Visual DensityEncodingVis. Type

Axis

Internal StateData PointsData Source

vie
w

da
ta

Visual Similarity

Connectivity

Data Similarity

General Preferences

Task-Specific Preferences

Vis
. R

ela
tio

ns
hip

s

Vis
ua

liza
tio

n P
ro

pe
rti

es

Us
er

 Pr
efe

re
nc

es

De
vic

e P
ro

pe
rti

es

De
vic

e R
ela

tio
ns

hip
s

Figure 2: The design space comprises aspects coming from the visualizations, users, and devices. When considered pairwise,

relationships emerge for both devices and visualizations.

A broader analysis was presented by Chung et al. [15],
discussing multiple considerations for data analysis in multi-
device setups. For instance, the combination of displays can
support different view arrangements (e.g., continuous, CMV,
separated instances). Similarly, the way how updates and
states are synchronized across devices can promote differ-
ent interface functionality during the analysis. However, the
authors do not touch on how to exactly realize a system
supporting these different aspects, and only point out the
technical challenges, e.g., system-imposed constraints com-
ing from the device’s hardware or software platform.

Multi-Device Frameworks & View Distribution
Utilizing heterogeneous devices in parallel introduces multi-
ple technical challenges how to coordinate and synchronize
the devices. The HCI community has proposed several frame-
works to tackle these challenges, often using web technolo-
gies as a foundation. Synchronization can happen onmultiple
levels: For instance, Webstrates [33] operates on the level of
the Document Object Model (DOM), effectively maintaining
exact copies on different devices. Other frameworks focus
on the graphical aspects of an interface from a developer’s
perspective, e.g., when spanning one canvas across multiple
devices [50, 58]. Also, functionality supporting cross-device
interaction techniques can be provided [27]. Designed specif-
ically for visualization, Badam and Elmqvist [5] and Badam
et al. [6] presented technical frameworks for synchronizing
user interactions as well as application states across devices.
While all these frameworks are designed to ease the devel-
opment of new applications, they require that programmers
or users manually arrange interface components.

This gap is partly addressed by research proposing specific
distribution algorithms or frameworks, most of which auto-
matically derive a candidate distribution based on interface
semantics provided by the developer, and then let the user
adjust the result. Panelrama [63] introduced a lightweight
specification that allows programmers to provide additional
semantics for HTML elements, which are then consumed
by an interface optimizer. Park et al. [46] proposed an opti-
mizer called AdaM, which is based on a constraint solver;
however, AdaM requires users or developers to provide ad-
ditional semantics for each interface component, too. The
XDBrowser [44, 45] segments web pages and distributes the

parts across devices. In all examples, the layout is not guar-
anteed to be optimal, and serves rather as a starting point.

More specialized applications may allow for automatically
determining dependencies between interface components
and how to organize them. As a case in point, recent work
by Husmann et al. [28] presented a similar system in the
context of an integrated development environment, but ap-
plied automatic assignments only for a few selected view
constellations. To our knowledge, such an approach has not
been proposed for visualization and data analysis yet.

3 DESIGN SPACE: INTERACTIVE VISUALIZATIONS
IN MULTI-DEVICE ENVIRONMENTS

The distribution and layout of views in a visualization in-
terface are not arbitrary, but often follow certain patterns.
Based on related work, considerations of existing interfaces,
and our own experience in cross-device research, we aim to
provide a conceptual framework that is able to reproduce
these patterns when distributing and arranging views across
multiple devices. The framework consists of a design space,
distribution heuristics, and a prototype implementation.
In creating our framework, we were guided by multiple

considerations. First of all, individual visualizations encode
richer semantics compared to other user interface compo-
nents [48], such as the data being visualized, the visual rep-
resentation chosen, and the typical tasks supported. By con-
sidering these aspects, it is possible to automatically derive
properties required for a distribution that otherwise would
have to be provided by analysts, designers, or developers.

Second, these semantics also reveal relationships between
multiple visualizations [48], which allows for further refining
the distribution. In existing interfaces or dashboards (see, e.g.,
Tableau dashboards1 or examples analyzed by Sarikaya et
al. [55]) it is possible to observe such relationships, e.g., two
bar charts are aligned for comparison. Similar aspects can be
observed in research focusing explicitly on large displays or
multi-device ensembles [34, 35], as well as for the involved
devices, where their properties and relationships imply their
strengths or possible roles in a distributed interface.

The design space aims to give an overview of interactive
visualizations in multi-device setups, considering all relevant
properties and relationships occurring (Figure 2), which we
group and discuss as five dimensions in the following. At
1“Customer Survey Result” and “Sales Summary” from http://tableau.com.

https://www.tableau.com/solutions/gallery/product-survey-analysis?__src=liftigniter&__widget=learn-recs-li&li_source=LI&li_medium=learn-recs-li
https://www.tableau.com/solutions/workbook/track-sales-interactive-dashboard
http://tableau.com

the end, this design space will eventually provide a funda-
mental understanding of the incorporated dimensions. By
molding this knowledge into easy-to-apply heuristics, we
aim to provide a guidance for new distribution approaches
(i.e., specific implementations) for interactive visualizations.

Visualization Properties
In comparison to traditional UI components, visualization
views feature a rich body of properties that depends on their
configuration, visual representation, or encoded data. These
properties can be used to construct visualizations (as in, e.g.,
D3 [11], Idyll [17], Vega [56, 57]) as well as to analyze them
(essentially the inverse of construction), as in our case.

First, visualizations can be characterized through proper-
ties related to their visual appearance: the actual visualiza-
tion type (i.e., used visual marks), the applied encoding and
mapping (i.e., visualized data dimensions), the axis configu-
ration (e.g., orientation, scale, sorting), as well as the default
size (and also implicitly the aspect ratio). Although these
properties are often defined in the context of the considered
data, they do not fully depend on the actual data: two views
can have the same visual configuration but show disjoint
data subsets. We also consider a visual density property, re-
sulting from the mark size, potentially occurring overlaps,
and existing additional elements (e.g., guides). This density
can affect the comprehension and supported interaction; e.g.,
the selection of small marks is more difficult and requires a
certain minimum precision (cf. Park et al. [46]).
For data-related properties, we consider the used data

source, the data points themselves, as well as the internal
state. The data source can describe only the source or the
complete data flow prior to the view, i.e., from the dataset
through filters or aggregation components. Depending on the
visualization system, certain functionality (e.g., aggregation)
can be part of the view (e.g., Vega-lite [56]) or a separate
component (e.g., Vistrates [7]). Nevertheless, we consider
them as pre-processing and not part of the visualization
itself. The data points allow comparing the data of two views
or analyzing the view regarding the number of visualized
marks, e.g., to estimate how dense the visualization is. Finally,
visualizations often maintain an internal state, e.g., selected
marks or ranges, which can be accessed by other views.

Visualization Relationships
Typical visualization interfaces consist of multiple visual-
izations (often known as dashboards [55]) where the views
complement each other by showing different aspects of the
data and, in combination, help the user gain insights. We
characterize the interplay between views as one of three rela-
tionship types: visual similarity, data similarity, and connec-
tivity (Figure 3). These relationships yield patterns for group-
ing and aligning views common in existing interfaces [55].

Visual Similarity
equality of visual properties

all sameall different

Default Size

EncodingVis. Type

Axis

Data Similarity
existence of data points in
both subsets

samedistinct overlap

DensitySource

Connectivity
constellation / interplay
defined by the data flow

exclusivenone supplementary

Source

Example: Small multiples

all same distinct none

Example: Scatterplot matrix

sameall same but one bi-directional

Example: Dashboard

all different overlap uni-directional

Figure 3: Three dimensions of visualization relationships

based on view properties; many combinations can be useful.

Visual similarity considers how similar the two views
appear, regardless of the actual encoded data points. We
use the visual-appearance properties described above (e.g.,
type, encoding, axis configuration) to rate the consistency
of two views [48]; by comparing the properties, the similar-
ity can range from all different to all same. Similar views
can support visual comparison when placed in juxtaposi-
tion [21, 22, 30, 48]. For instance, two views with the very
same visual configuration is an example of small multiples,
where the single instances differ only in the shown data.
Slightly weaker relationships can be found in scatterplot ma-
trices, where two plots differ in one dimension. In contrast,
dashboards may feature multiple views that are not or partly
consistent and, thus, have only a weak visual similarity [55].
The second relationship type is data similarity, and ex-

presses how big the overlap between the visualized data
points of two charts is. When the data is exactly the same,
this indicates that the two views show different representa-
tions for the same data subset. A weaker similarity is a data
overlap, and no similarity means the data is distinct. These
constellations can indicate certain exploration pattern, e.g.,
overview+detail (overlap). However, in many situations, data
similarity must be considered with respect to visual similar-
ity. For instance, some combinations of the two measures are
not practical, e.g., a perfect visual similarity and a perfect
data similarity describes the same visualization. In conclu-
sion, data similarity provides an indication which views are
related data-wise and, thus, can provide additional insights.

Finally, views can also have a relationship with respect to
the data flow, which we define as connectivity. This involves
mechanisms such as linked brushing in multiple coordinated
views [52], or incorporating a selection in one chart as a
filter condition in another. We distinguish between different
connectivity levels; the strongest is an exclusive connectivity,
where a view receives its data purely from another (e.g., a
filter component). Linked brushing, instead, is an example
of an additional, supplementary connectivity; however, both

views would still be able to display data without this con-
nectivity. Similar rankings of the connectivity can also be
found in the literature; for instance, VisTiles [34] encoded
this ranking by distinguishing between connections trig-
gered by side-by-side combinations (i.e., stronger ones) and
general connections (e.g., selections). Notably, the connec-
tivity extends also to non-visualization components, e.g., UI
elements for defining filters or aggregations.

User Preferences
Visualization interfaces are typically flexible and can be
adapted to user preferences. We distinguish here between
two types of preferences: general and task-specific prefer-
ences. General preferences are independent of a specific situ-
ation and derive mostly from how a user prefers to arrange
things or what overall strategy for device organization he
follows [23]. For instance, a user may want to keep a filter
component on the right device border, or prefers to have one
specific visualization on a specific device. Task-specific prefer-
ences emerge during the data exploration [1, 13, 64], and also
affect the distribution. This can involve, e.g., aligning views
for visual comparison, temporarily enlarging a visualization,
or moving a view to another device to simplify interaction.

While multiple distributions of the same quality exist, they
may fit analyst’s preferences differently. Thus, considering
these user preferences helps to improve the system’s us-
ability. However, retrieving such information automatically
is challenging; instead, interfaces should provide adequate
functionalities that allow users to express their preferences.

Device Properties
Devices today have a very wide spectrum of distinct charac-
teristics, many of which have already been considered in a
multitude of existing research [23, 26, 34, 45, 46, 63]. Likely
the most important property is the available screen estate,
determining how many visualizations can be displayed at
what size. Since pixel density differs between devices, screen
resolution should not be a sole measure as the resulting
physical size is also important. Further, devices differ in the
available input modalities, i.e., no input, touch, pen, mouse,
or keyboard, and the resulting input accuracy [46] of these.
The device type can also indicate useful information with
regards to mobility or computation power. In combination
with the ownership, this allows to distinguish between per-
sonal smartphones (mostly used by one person) or public
large display (shared with multiple users) [26, 32, 42].

Besides these basic properties, further characteristics can
be considered. Contextual information about the device’s
posture, orientation, and user distance (i.e., user-to-device
proximity) provide insights on how the device is used by
analysts. For instance, hand-held devices aremore likely to be
used for input. Similarly, a distant device may require scaling

up views for readability reasons. Further, advanced display
specifications could be considered (e.g., viewing angles, color
accuracy, brightness). However, such properties are hard to
access and require external sensors or knowledge.

Device Relationships
Depending on the actual device ensemble, devices can step
into different relationships during the interaction. While the
theoretically possible combinations are manifold, we focus
here on realistic device combinations. The simplest combi-
nation is a two-display desktop setup, where the displays
are aligned and form one big surface. However, in a scenario
where a laptop is connected to a projector, these two screens
act as separate units with different properties. The second
case can also be applied to mobile devices (i.e., smartphones
and tablets): they can be used in combination with a larger
display or a desktop [26, 32, 42], as well as withmultiple other
mobiles [34, 47, 50, 62]. In these situations, devices differ re-
garding their type, size, input modality, posture, and distance,
which makes it possible to assign certain device rules to them.
For instance, smaller devices in addition to a larger device
are most often suitable to host additional details and UI el-
ements [32, 34, 42], or devices closer to the user can act as
remote controls for a more distant device [26, 35, 37, 61, 62].

4 HEURISTICS FOR DERIVING A VIEW-SENSITIVE
DISTRIBUTION AND LAYOUT

Our design space and its dimensions can be used to both
describe and generate layout strategies for cross-device vi-
sualization. In our work, we use these dimensions to derive
six heuristics for distributing components of a visualization
interface across multiple devices. With these heuristics, we
aim to provide comprehensible and replicable high-level con-
straints. We found that formal specification, such as in the
AdaM framework [46], is often costly with little practical
gain, and—most importantly—results in definitions that are
hard to relate to. In contrast, our heuristics are prescriptive
also to human designers and can be used to guide the design
of manual distribution, algorithms, or even optimizers.

H1: Visual Similarity

H2: Data Similarity

H3: Connectivity

view grouping & alignment

Global Device Assignment - assign visualizations to devices

Local View Arrangement - arrange / align visualizations on each device

device assignment

view adjustments

H4: Data Density

H5: Device Suitability

H6: User Preferences

H1: Visual Similarity

H2: Data Similarity

H3: Connectivity

view grouping & alignment

H4: Data DensityH6: User Preferences

Figure 4: The heuristics are incorporated for both the global

device assignment and the local view arrangement on de-

vices; in the process, heuristics can contradict each other.

Each heuristic contributes to different aspects of a distri-
bution, such as view grouping or device assignment, while
they also allow for promoting common analysis tasks (e.g.,
visual similarity supports comparison tasks). Specifically,
we consider the heuristics to be applied in a step-wise pro-
cess (Figure 4), where a later heuristic can contradict earlier
assignments. In this process, the heuristics can be detailed,
weighted, and transformed into a specific quantification; our
Vistribute implementation serves only as one example.

Grouping & Alignment Based on View Relationships
The relationships between visualizations can serve as indi-
cators for which views should be grouped or aligned [48].
Therefore, we introduce three corresponding heuristics.

As pointed out above, views with a high visual similarity
promote visual comparison. Based on common practice, such
as in small multiple displays and scatterplot matrices, it is
beneficial to place these views next to each other. Reducing
the screen distance facilitates the user alternating their fo-
cus between the two views and, thus, to actually compare
them. Aligning the views along a shared axis will further
support comparison. Here, we utilize the visual similarity
as an indicator if and how well two views are comparable.
We consider a high visual similarity as the strongest type of
relationship between views that motivates juxtaposing them.
However, a lower visual similarity is often not of interest.
We define the heuristic as follows:

Heuristic 1 (Visual Similarity). If two views are visu-
ally very similar, they should be both juxtaposed and aligned.

The second driver for grouping is data similarity. Placing
the views with a high data similarity close to each other, i.e.,
forming view groups, can support the search-related tasks
of users [13] as well as focussing on related aspects (cf. the
semantic substrate concept by Chung et al. [15]). For instance,
if multiple views encode the exact same data subset and are
placed next to each other, they will provide different visual
representations of the same subset. Similarly, this applies to
other constellations, such as overview+detail patterns (i.e.,
one view shows a subset of the other view). However, this
relationship is not as strong as the visual-similarity-based
one, and typically does not require an alignment of the views.
Further, it may also depend on the type of visual similarity:
for example, a subset relationship eventually represents a
useful overview+detail pattern if the two views are also of
the same type. As a result, this heuristic focuses on data
similarity, but also incorporates visual similarity:

Heuristic 2 (Data Similarity). If two views have a high
degree of data similarity and a corresponding visual similarity,
they should be placed close to each other.

As described before, views can consume data from another
view and either rely on it exclusively (e.g., filter), or use it as a
supplementary input (e.g., linked brushing). In the first case,
the component providing the input must be accessible so
that the other view can be used. Therefore, it is beneficial to
place it close to the affected view, in order to emphasize their
dependency. Also, and similar to visual similarity, proximity
helps to reduce the cost of attention switches between the
input component and the affected components. This is also
true when the connection provides supplementary input. In
all cases, a close proximity of the views is desirable:

Heuristic 3 (Input Connectivity). If an interface com-
ponent serves as data input for others, it should be placed close
to the affected components.

As a result of these heuristics, we expect two types of view
groups: (i) strong groups that result in guaranteed alignment,
and (ii) weak groups that lead to view proximity, but also
can be split up in case of insufficient space.

View Adjustments and Device Assignments
The next step towards the distribution is considering the
single views with respect to the current device ensemble.
First, it should be identified how much space a view re-

quires: although exceptions may exist [29], generally, the
more data points a visualization encodes, the more it benefits
from being scaled up [39]. For instance, a bar chart showing
three bars requires less space than one with 50 bars. Simi-
larly, a scatterplot encoding hundreds of data points should
be allocated more space than one with 10 marks. While the
optimal size in relation to the number of data points always
depends on the visualization type, it is still a good estimation
of relative space requirements. Finally, many visualizations
are sensitive to changes in their aspect ratio. Therefore, scal-
ing should be uniform or only slightly alter the aspect ratio
to avoid tampering with the original perception.

Heuristic 4 (Data Density). A view should be allocated
space proportional to the number of data points it encodes.

Second, we consider the device suitability, which expresses
how well a certain device can fulfill the requirements derived
from a view or a group of views. These requirements mainly
comprise the space requirement, input accuracy, and rela-
tions arising from the connectivity. For instance, views with
a high space requirement are likely to be placed on a larger
display. However, the suitability has not always an impact,
i.e., when all devices are very similar, and, thus, interchange-
able. For instance, when only tablets are available, it does not
matter which part of the interface is distributed to which de-
vice. In contrast, with high diversity in the device ensemble,
device suitability can be used for assigning different device
roles (see device relationships described in design space).
This can lead to exceptions of the grouping, e.g., components

serving as an input can be moved to a mobile device and
act as a remote control for the larger displays. In summary,
device suitability is a main constraint in diverse ensembles:

Heuristic 5 (Device Suitability). If devices are diverse,
view assignments should be guided by device suitability.

User Preferences
No matter how advanced a view distribution system is, users
should be able to change the layout based on their prefer-
ences or current situation. These preferences can involve,
e.g., a fixed placement of some views, an altered alignment, or
even the exclusion of certain devices or components. These
constraints should always be reflected in the distribution
and overwrite the definitions coming from the other heuris-
tics. Furthermore, these preferences should be stored and
reapplied automatically, but must be editable by the user.

Heuristic 6 (User Preferences). If user preferences are
applicable, they outweigh all other heuristics.

In the context of analysis tasks [1, 13, 64], i.e., temporary
user interests, it could be theoretically possible to infer these
automatically based on user interactions. For instance, if
a user makes alternating selections in two views, this can
express the need to bring the views closer together. As we ex-
plicitly left room for weighting the heuristics, this allows for
optimizing the distribution for the current task, e.g., empha-
sizing data similarity (H2) and connectivity (H3) to support
investigating related items (connect [64]). However, toomany
(unexpected) interface changes must be avoided.

5 THE VISTRIBUTE SYSTEM
We implemented a web-based system2 that is able to (i) ex-
tract required properties from visualization/UI components
and connected devices, (ii) derive and apply a distribution,
and (iii) allow user adaptions via a control panel. The imple-
mentation is one of many possible instances of our heuris-
tics; for each feature, we will reference the related heuristic.
Stated quantifications/values were determined empirically.

Underlying Systems and Dependencies
Our implementation builds upon three existing system lay-
ers: Webstrates, Codestrates, and Vistrates. Webstrates [33]
provides the underlying synchronization (of, e.g., states, se-
lections, device information) across devices. Besides an in-
browser computing environment, Codestrates [51] provides
a package management system based on Webstrates. Vis-
trates [7] is a visualization layer for Codestrates offering
specific visualization components and a data-flow-based ex-
ecution model. This combination provides common visual-
izations and the possibility to connect them to a data source

2github.com/tomhorak21/vistribute

or with each other, hence, providing all tools to create an
adaptable and full-fledged visualization interface.

Our distribution layer is implemented as a Vistrates meta-
package and makes use of the offered functionality of the
before-mentioned layers, e.g., when accessing view prop-
erties (including states and data flow configurations). The
distribution algorithms are run on one client; the resulting
distribution is synchronized with all clients as a JSON object.
Then, the clients move their assigned views to the given posi-
tion on an interface layer. The creation of the visualizations
and their connections is, however, left to the user.

Deriving Properties
The first step for the distribution is to derive all required
information, i.e., visualization and device properties.

View Properties and Relationships. To extract these proper-
ties, we directly access the standardized state of the Vistrates
components, e.g., template, size, data source(s), and accessed
data properties. Based on the rendered view, we can distin-
guish between visualization and UI components. We also
identify the incoming data as a basis for following steps.
The visual similarity is calculated by comparing selected

properties and assigning points for matches; specifically, we
consider the component template (3 pts; comprises type and
encoding), dimensions (i.e., consumed data properties; 2 pts),
number of data points (1 pt), and size (1 pt). By traversing
the components’ data source, we extract the connectivity
(H3, exclusive or supplementary) and the data similarity (H2,
none or same). For performance reasons, data points were
not compared directly; instead, we determine the closest
common source and check if the data structure changes on
the way (by, e.g., aggregation). While this does not allow
detecting data overlap, it provides an indication if the data
structure is the same.

Device Properties. Current browsers provide access to a set of
device specific properties, allowing us to characterize as well
as (re)identify them. Besides common properties such as reso-
lution, language, platform, and user agent, in many cases also
hardware-specific properties (e.g., parallel threads, memory
size, CPU, GPU) are available. However, some device infor-
mation is missing, e.g., advanced display properties, physical
size, or attached input devices (e.g., keyboard, mouse). As
a result, we cannot distinguish larger displays (e.g., digital
whiteboard, projector) from desktop displays, as their res-
olution is identical. Similarly, contextual information (e.g.,
user proximity, ownership) would require external sensors.

Notably, one physical device can host multiple clients (e.g.,
laptop with projector), where each client should be consid-
ered independently. At the same time, in some setups multi-
ple clients must be perceived as one unit (e.g., display wall
consisting of multiple displays), even if they are not hosted

https://github.com/tomhorak21/vistribute

Laptop
Large Display

LC-Dist-16

LC-Dist-17

LC-Types-16

LC-Types-17
H1: Visual Similarity

H1: Visual Similarity

Map-Filt Filter

BC-Weap-Filt

BC-Dist-All

BC-Types-All

BC-InOut-Filt

H3: Connectivity

Figure 5: Example distribution illustrating H1 and H3: On

the laptop, views form a block based on their connectivity

to the filter (H3, exclusive); the line charts form two pairs

based on their visual similarity (H1, all-same, 7 of 7 pts).

on the same device. Therefore, we introduce an abstracted
representation of a device called surface. Each surface repre-
sents one or more clients and maps its resolution to them. For
the distribution, only these surfaces are considered; except
for resolution, the device’s properties are inherited.

Distribution: Grouping, Assignment, and Adjustment
As described before, we consider the distribution to be a
multi-step process. The first step is to identify the view
groups and their types (strong and weak). To qualify as a
strong group, views must have an exact visual similarity
(= 7 pts; H1), while weak groups are formed based on data
similarity (H2) and connectivity (H3). An example distribu-
tion is given in Figure 5. In addition to these groups, we
also calculate a relative space requirementVSR for each view
based on the number of visualized data points (damped via
loд2) and normalized so that

∑
VSR = 1 (H4). Similarly, based

on the available area, we calculate a relative screen estate
SSE for each surface, again with

∑
SSE = 1.

Next, we identify special view-device pairs, e.g., offloading
input components to smaller mobile devices, and assign the
views directly to the surface (H5). Then, we proceed with the
default assignment of views to surfaces based on the space
requirement (H4,5). We consider strong view groups first,
then weak view groups, and finally all other views. If no
surface is big enough to exclusively host a group, we either
accept to scale down the views (strong groups), or to split
them up across multiple devices (weak groups).

The last step is arranging the views on each surface. Here,
we applied an approach similar to bin packing [20]: basically,
we create columns and fill them up until the available surface
height is no longer sufficient. The initial size of views is based
on their space requirement in relation to the surface’s screen
estate (i.e., VArea = VSR × SArea ; H4). Because of different
aspect ratios and sizes, some rows may not fill up the whole
column width; in these situations we try to fill up the spots
with smaller views. While adding views to columns/rows, we
allow for a flexibility in view size and aspect ratio (up to 25%).
As constellations can exist, where views cannot be fit into
the available screen space (e.g., because of contrary aspect

ratios), we scale the whole layout down to fit into the surface.
Finally, we again adjust view height and width up to 50%
to eliminate any free space. Although our implementation
does not explicitly align views yet, this approach typically
maintains the alignment/grouping implicitly as the views
are processed in order of their group membership.

Control Panel for User Adaptations
Our implementation provides a control panel allowing users
to fine-tune the distribution (H6). The panel shows the sur-
faces and distributed views in both a preview and lists. The
lists provide indicators for group membership and space
requirement and allows ignoring surfaces and views, mak-
ing them ineligible for automatic layout. Views can also be
manually assigned to surfaces by drag and drop. The system
reacts differently to these changes: while ignoring views or
surfaces triggers a recalculation of the complete distribution,
the manual assignment only re-runs the local layout. Here,
we expect users to have the mental model of reassigning
one specific view, regardless of its relations to other views.
Therefore, we skip the view assignment to avoid side effects.
The user can also switch to a completely manual process,
where they can place and scale views freely.

Currently, distribution updates are only triggered on ma-
jor changes, such as a changed device configuration or when
new views are added to the interface. In these situations,
we fade in a miniature overview map of the surface con-
figuration highlighting moved views and/or new surfaces.
However, smaller view-specific changes, e.g., caused by filter
conditions, are ignored to avoid interrupting the user.

6 STUDY: USER-CREATED DISTRIBUTIONS
In order to back up our heuristics, we compare distribution
and layout generated by our system to multiple user-created
ones as well as report on user ratings of the distributions.

Participants. We recruited six paid participants (age M=36.8,
SD=12.59 yrs; 1 female, 5 male) at the University of Maryland.
We required that all of them have both theoretical and prac-
tical background in data analysis and/or visualization theory,
i.e., actively conducting research in this area or work with
these interfaces on a regular basis. All participants have been
active in the field for at least 3 years (M=9.8, SD=10.26 yrs).

Apparatus and Dataset. We used the Vistribute system as de-
scribed before on a crime dataset from the City of Baltimore3.
The example interface consisted of 10 views (Figure 5). Two
bar charts showed the overall crime distribution for districts
and crime types (BC-Dist-All, BC-Types-All). Selections in
these were used as a filter for two connected line charts
each, showing the distribution over time for 2016 and 2017

3https://data.baltimorecity.gov

https://data.baltimorecity.gov/Public-Safety/BPD-Part-1-Victim-Based-Crime-Data/wsfq-mvij

(LC-Dist-16/17, LC-Types-16/17). A filter component allowed
for filtering the data to explore subsets (Filter). The filtered
output was consumed by two bar charts (weapons, BC-Weap-
Filt; inside/outside location, BC-InOut-Filt) and a map (Map-
Filt). We extended the prototype with a manual layout mode,
allowing a free view assignment and arrangement using the
control panel. Once placed on a surface, views could also be
moved and resized directly in the interface.

Physical Setup. We included three device ensembles:

S1 A traditional dual-display desktop (each 24 ′′, full-HD,
1 landscape, 1 portrait);

S2 A novel desktop setupwith a laptop (13 ′′, 1600 × 900 px)
on a standing desk and a large display (55 ′′, full-HD)
within arm’s reach; and

S3 A mobile device ensemble consisting of a tablet (HTC
Nexus 9, 9 ′′, 2048 × 1536 px, landscape), a smartphone
(Samsung Galaxy S8, 5.8 ′′, 2690 × 1440 px, landscape),
and the laptop from before.

We chose these setups as they represent realistic combi-
nations that are already in use or are likely to be commonly
used in the near future. Figure 1a-c shows similar setups.

Procedure. Participants first received a short introduction
on view distribution as well as the experimental dataset. We
provided them with an initial understanding for the require-
ments of a distribution by explaining typical scenarios and
tasks in the context of the crime dataset. We also explained
the abilities and connections of the existing views as well as
provided a printout showing these connections.

In Phase I, participants were asked to distribute all views
across the available surfaces for all three setups (within-
participants, counter-balanced order). None of Vistribute’s
automatic layout functionality was active during this phase.
We asked participants to think-aloudwhile distributing views
and logged the created distributions. As the interface offered
no support for alignment, we carefully adjusted them after-
wards to remove smaller and unintended overlaps or offsets.
These adjusted distributions were used for Phase II.

In Phase II, participants were shown three existing distri-
butions for each setup. For all distributions they were asked
to rate its quality on a 5-point Likert-scale and provide free-
form comments. Since we included three physical setups,
each participant rated nine distributions. The setup order
was the same as in Phase I. From the three distributions, two
were created by prior participants (randomly selected), while
one was generated by Vistribute. Their order was also ran-
domized per participant. We did not indicate to participants
how these distribution were created. For the first two par-
ticipants, we used distributions created during earlier pilot
runs. In total, sessions lasted approximately one hour.

Automatic
Manual

1 (Unsuitable Distribution) 5 (Optimal Distribution)2 3 4

M = 3.6

M = 3.9

BC-TYPES-ALL

Automatic Percentage of distributions applying assignment:
100%83.3%66.6%50%33.3%16.6%Manual

BC-DIST-ALL LC-TYPES-16 LC-TYPES-17 LC-DIST-16 LC-DIST-17 FILTER MAP-FILT BC-INOUT-FILT BC-WEAP-FILT

S1 Desktop 1
Desktop 2

S2 Large Display
Laptop

S3
Laptop
Tablet
Phone

B

A

8.3% 11.1% 19.4% 36.1% 25%

38.9%27.8%5.6% 11.1% 16.7%

Figure 6: (a) heatmap showing view-to-surface assignment

for each setup (per column: left, aggregatedmanual distribu-

tions; right, automatic one), e.g., 50% of participants placed

BC-Types-All on the Laptop in S2; (b) the manual distribu-

tions were rated slightly better than the automatic version.

User Feedback and Findings
We found threemain results: when considering a distribution,
(1) participants make decisions based on very similar aspects
as embodied in our heuristics, but (2) personal preferences
have a strong influence leading to diverse distributions across
participants (Figure 6a), and (3) the manual distributions
were rated slightly better than the automatic ones (Figure 6b).

When stating their thoughts during the distribution, par-
ticipants touched on similar principles as covered in our
heuristics. For instance, they explicitly stated that views with
more data points should be placed bigger (P1–6), connectiv-
ity must be valued (P1–4, P6), or that similar views should
be aligned for comparison (P3–P4, P6). Figure 6a also shows
some of these patterns, e.g., the line charts (LC-Types-16/17
and LC-Dist-16/17 form clear pairs, and, especially for S2, are
often assigned to the same device (e.g., Figure 5). We also
observed participants considering the influence of device
size (P1, P3–4, P6) or input capabilities (P2–4, P6).
However, multiple aspects were considered differently

across participants. While most participants valued smaller
devices as appropriate for input purposes, P2 used the mobile
devices explicitly for visualizations, as these “can be easily
passed around.” For connectivity, we observed that some par-
ticipants strongly favored placing connected views adjacent
to each other (P1, P6), while others found it useful to split
them between devices. We also found that some aspect are
not covered in our framework yet: multiple participants had
a higher-level definition of data similarity by considering
their semantics. As an example, the views encoding districts
(LC-Dist-16/17, BC-Dist-All), themap, and the Inside-Outside
bar chart were classified as geographical data, and therefore
combined by three participants (P2, P4, P6). Participants (P1–
2, P6) also mentioned the importance of surface adjacency
and its influence on the perceived proximity between views.

As a result, we could observe a high diversity across the
created distributions. In Figure 6a, this can especially be ob-
served for the bar charts in S1 and S2, as well as for most of
the views in S3. Further, no two distributions were similar.
Three distributions for S1 and two for S2 used the same view-
to-surfaces assignment; however, they had different local lay-
outs. This diversity in user preferences can also be observed
in the ratings in the form of high standard derivations. On
average, participants rated the manual distribution (M=3.9,
SD=0.99) slightly better than the automatic ones (M=3.6,
SD=1.21; see Figure 6b). However, the ratings must be con-
sidered carefully: our study included only a small number of
participants and they all worked only for a limited time on
the distributions without performing specific analysis tasks.

Interestingly, multiple participants found the distribution
“exhausting”, and one participant explicitly stated that “the
computer should suggest where to put things; there should be
some optimization for this” (P5), also stressing that a manual
placement is considered a burden (P1, P5). On average, partic-
ipants spent 8 minutes on the second and third distribution
(M=19.6 minutes for the first one). Although a certain part
of this time is caused by the think-aloud design and lacking
interface support for aligning, even in a real-world system
users would eventually have to spend a couple of minutes for
the distribution. Any shortcut offered by an automatic distri-
bution would therefore be an improvement. Finally, P1 also
noted that “semantically beautiful is much more important
than aesthetically beautiful.” Hence, even if an automatic ap-
proach is not able to reach the visual quality of a manual one,
it may still be able to provide a valuable layout. All created
distributions are listed in the supplementary material.

7 DISCUSSION & FUTUREWORK
We believe that our framework can serve as a foundation
for future research on distributed visualization. Although
limitations remain, we hope to stimulate follow-up work on
distribution approaches as well as aspects even beyond that.
Our long-term goal is to simplify the usage of multi-device
environments so that their full potential can be realized.

Limitations, Framework Extensions, and Evaluations
Participant feedback indicates that some of our heuristics
or the implementation could be refined; for instance, a se-
mantic data similarity (e.g., all location-related views) or con-
textual device aspects (e.g., physical device arrangements)
are currently not represented, as they are hard to capture.
For example, device proxemics [8, 40] can currently only be
sensed with external tracking systems, which are hardly ap-
plicable outside of research prototypes [34, 49, 62]. However,
this might change as internal device sensors improve [31],
allowing to better facilitate cross-device dependencies.

Our current Vistribute implementation dynamically re-
sponds to changes in the device and view ensemble by auto-
matically recomputing the distribution. Unfortunately, such
events may trigger a radical rearrangement of the distribu-
tion, particularly if the surface in question is large. Beyond
the overview minimap, we currently provide no mechanism
to help a user reorient themselves when this happens. In the
future, we may want to incorporate specific technologies to
visualize changes [4, 25], e.g., by using animated transitions
showing how views are rearranged from one distribution
to another, or by using transient color highlights [10]. Also,
distribution layout changes may require explicit user confir-
mation. Finally, a history of the latest applied distributions
could allow switching between different variations.

In extension to our current study, more thorough evalua-
tions should be conducted. An extensive observation study
on how users manage visualizations in MDEs during an anal-
ysis session could provide further insights, e.g., how often
they want to adapt the interface and for which tasks. In a
quantitative manner, it would be interesting to measure per-
formance indicators (e.g., task completion time, error rate)
in comparison to non-optimized or random distributions.

From Heuristics Towards Formalism
While the Vistribute framework does not stipulate a spe-
cific distribution algorithm, our example implementation is a
rather simple algorithm realizing our heuristics, rather than
a formal user interface specification such as AdaM [46]. For
this paper, we explicitly eschewed such a formal approach,
since we felt that current practice in arranging visualization
views is mostly qualitative in nature. Instead we relied on
heuristics that could be balanced for each specific implemen-
tation. The results from our evaluation bore this decision out;
our automatic layouts were similar to layouts hand-crafted
by experts. Nevertheless, extending our current algorithm
towards an optimizer can help to improve the distribution
quality, especially when cases exist that cause sub-optimal
layouts. This could be done by running multiple variations
with different parameters and identifying the best one.

Beyond that, nothing is preventing us from implementing
a formal version, akin to AdaM, based on our heuristics in
the future. This could also be further extended by applying
machine learning approaches for deriving weights for the
heuristics. However, as machine classifiers require a large
training dataset of successful distributions, this can only be
a second step after introducing distributed visualization in-
terfaces to a broader audience. Finally, even when following
this vision towards a distribution purely based on formalism,
we believe that allowing users to modify the result is central.
Notably, it should be possible to apply these adaptions in a
natural way, e.g., by drag-and-drop, and not through abstract
parameters, as it is often the case for current optimizers [46].

From Distribution Towards Visualization Generation
In the process of developing our framework, we noted several
times that being able to automatically generate and modify
the views (instead of working with existing views) would
make our approach more powerful. For instance, when scal-
ing a view, this would make it possible to optimize the aspect
ratio for improved perception [24]. Instead of just aligning
two views in order to promote visual comparison, an even
more sophisticated approach would be to rebuild the views
to use the same chart type and normalize both of their scales
to further increase consistency [48]. This step, to either gen-
erate views to complement existing ones, or even to generate
a complete dashboard from scratch [43], is not far.
In other words, to truly realize the potential of multi-

device environments for visual analytics, it may be necessary
to entirely relinquish the task of visualization specification to
the distribution middleware, merely specifying the datasets
and tasks involved. Unlike the human designer, who can only
enumerate so many variant visualizations for a finite set of
possible device ensembles, a fully automated visualization
generation engine would be able to construct precisely the
visual representations that are best suited to the available
hardware, physical context, and overarching analysis task.

8 CONCLUSION
We have presented Vistribute, a combined design space, set
of heuristics, and prototype implementation for cross-device
distribution of visualizations across a dynamically changing
ensemble of displays and devices. Informed by current visu-
alization practice, we have validated our heuristics and their
implementation in a qualitative evaluation where visualiza-
tion experts manually constructed distributed layouts. Our
findings suggest that there is little qualitative difference be-
tween manual and automatic layouts, and that the automatic
layout can save significant time and effort.

ACKNOWLEDGMENTS
We thank Karthik Badam for his valuable feedback as well
as Sigfried Gold for providing his voice for our video. This
work was supported by the Deutsche Forschungsgemein-
schaft (DA 1319/3-3, DA 1319/11-1), the Danish Center for
Big Data Analytics Driven Innovation (IFD-5153-00004B),
the Aarhus University Research Foundation, and the U.S.
National Science Foundation (IIS-1539534). Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the funding agencies.

REFERENCES
[1] Robert Amar, James Eagan, and John Stasko. 2005. Low-level Compo-

nents of Analytic Activity in Information Visualization. In Proceedings

of the IEEE Symposium on Information Visualization. IEEE, Piscataway,
NJ, USA, 111–117. https://doi.org/10.1109/infvis.2005.1532136

[2] Christopher Andrews, Alex Endert, and Chris North. 2010. Space to
think: large high-resolution displays for sensemaking. In Proceedings
of the ACM Conference on Human Factors in Computing Systems. ACM,
New York, NY, USA, 55–64. https://doi.org/10.1145/1753326.1753336

[3] Christopher Andrews, Alex Endert, Beth Yost, and Chris North. 2011.
Information visualization on large, high-resolution displays: Issues,
challenges, and opportunities. Information Visualization 10, 4 (Aug.
2011), 341–355. https://doi.org/10.1177/1473871611415997

[4] Daniel Archambault, Helen Purchase, and Bruno Pinaud. 2011. Anima-
tion, Small Multiples, and the Effect of Mental Map Preservation in Dy-
namic Graphs. IEEE Transactions on Visualization and Computer Graph-
ics 17, 4 (April 2011), 539–552. https://doi.org/10.1109/tvcg.2010.78

[5] Sriram Karthik Badam and Niklas Elmqvist. 2014. PolyChrome: A
Cross-Device Framework for Collaborative Web Visualization. In Pro-
ceedings of the ACM Conference on Interactive Tabletops and Surfaces.
ACM, New York, NY, USA, 109–118. https://doi.org/10.1145/2669485.
2669518

[6] Sriram Karthik Badam, Eli Fisher, and Niklas Elmqvist. 2015. Munin: A
Peer-to-Peer Middleware for Ubiquitous Analytics and Visualization
Spaces. IEEE Transactions on Visualization and Computer Graphics 21,
2 (Feb. 2015), 215–228. https://doi.org/10.1109/tvcg.2014.2337337

[7] Sriram Karthik Badam, Andreas Mathisen, Roman Rädle, Clemens N.
Klokmose, and Niklas Elmqvist. 2019. Vistrates: A Component Model
for Ubiquitous Analytics. IEEE Transactions on Visualization and Com-
puter Graphics 25, 1 (Jan. 2019), 586–596. https://doi.org/10.1109/
TVCG.2018.2865144

[8] Till Ballendat, Nicolai Marquardt, and Saul Greenberg. 2010. Prox-
emic interaction: designing for a proximity and orientation-aware
environment. In Proceedings of the ACM Conference on Interactive
Tabletops and Surfaces. ACM, New York, NY, USA, 121–130. https:
//doi.org/10.1145/1936652.1936676

[9] Patrick Baudisch and Christian Holz. 2010. My new PC is a mobile
phone. ACM XRDS 16, 4 (June 2010), 36–41. https://doi.org/10.1145/
1764848.1764857

[10] Patrick Baudisch, Desney S. Tan, Maxime Collomb, Daniel C. Robbins,
Ken Hinckley, Maneesh Agrawala, Shengdong Zhao, and Gonzalo
Ramos. 2006. Phosphor: explaining transitions in the user interface
using afterglow effects. In Proceedings of the ACM Symposium on User
Interface Software and Technology. ACM, New York, NY, USA, 169–178.
https://doi.org/10.1145/1166253.1166280

[11] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3: Data-
Driven Documents. IEEE Transactions on Visualization and Computer
Graphics 17, 12 (Dec. 2011), 2301–2309. https://doi.org/10.1109/TVCG.
2011.185

[12] Lauren Bradel, Alex Endert, Kristen Koch, Christopher Andrews, and
Chris North. 2013. Large high resolution displays for co-located col-
laborative sensemaking: Display usage and territoriality. International
Journal of Human-Computer Studies 71, 11 (Nov. 2013), 1078–1088.
https://doi.org/10.1016/j.ijhcs.2013.07.004

[13] Matthew Brehmer and TamaraMunzner. 2013. AMulti-Level Typology
of Abstract Visualization Tasks. IEEE Transactions on Visualization
and Computer Graphics 19, 12 (Dec. 2013), 2376–2385. https://doi.org/
10.1109/tvcg.2013.124

[14] Olivier Chapuis, Anastasia Bezerianos, and Stelios Frantzeskakis. 2014.
Smarties: an input system for wall display development. In Proceedings
of the ACM Conference on Human Factors in Computing Systems. ACM,
New York, NY, USA, 2763–2772. https://doi.org/10.1145/2556288.
2556956

[15] Haeyong Chung, Chris North, Sarang Joshi, and Jian Chen. 2015. Four
considerations for supporting visual analysis in display ecologies. In

https://doi.org/10.1109/infvis.2005.1532136
https://doi.org/10.1145/1753326.1753336
https://doi.org/10.1177/1473871611415997
https://doi.org/10.1109/tvcg.2010.78
https://doi.org/10.1145/2669485.2669518
https://doi.org/10.1145/2669485.2669518
https://doi.org/10.1109/tvcg.2014.2337337
https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1145/1936652.1936676
https://doi.org/10.1145/1936652.1936676
https://doi.org/10.1145/1764848.1764857
https://doi.org/10.1145/1764848.1764857
https://doi.org/10.1145/1166253.1166280
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1016/j.ijhcs.2013.07.004
https://doi.org/10.1109/tvcg.2013.124
https://doi.org/10.1109/tvcg.2013.124
https://doi.org/10.1145/2556288.2556956
https://doi.org/10.1145/2556288.2556956

Proceedings of the IEEE Conference on Visual Analytics Science and
Technology. IEEE, Piscataway, NJ, USA, 33–40. https://doi.org/10.1109/
vast.2015.7347628

[16] Haeyong Chung, Chris North, Jessica Zeitz Self, Sharon Lynn Chu, and
Francis K. H. Quek. 2014. VisPorter: facilitating information sharing
for collaborative sensemaking on multiple displays. Personal and
Ubiquitous Computing 18, 5 (June 2014), 1169–1186. https://doi.org/
10.1007/s00779-013-0727-2

[17] Matt Conlen and Jeffrey Heer. 2018. Idyll: A Markup Language for Au-
thoring and Publishing Interactive Articles on the Web. In Proceedings
of the ACM Symposium on User Interface Software and Technology. ACM,
New York, NY, USA, 977–989. https://doi.org/10.1145/3242587.3242600

[18] David Dearman and Jeffery S. Pierce. 2008. It’s on My Other Com-
puter!: Computing with Multiple Devices. In Proceedings of the ACM
Conference on Human Factors in Computing Systems. ACM, New York,
NY, USA, 767–776. https://doi.org/10.1145/1357054.1357177

[19] Niklas Elmqvist and Pourang Irani. 2013. Ubiquitous Analytics: Inter-
acting with Big Data Anywhere, Anytime. IEEE Computer 46, 4 (April
2013), 86–89. https://doi.org/10.1109/mc.2013.147

[20] M. R. Garey and D. S. Johnson. 1981. Approximation Algorithms for Bin
Packing Problems: A Survey. In Analysis and Design of Algorithms in
Combinatorial Optimization. Springer Vienna, Vienna, 147–172. https:
//doi.org/10.1007/978-3-7091-2748-3_8

[21] Michael Gleicher. 2018. Considerations for Visualizing Comparison.
IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan.
2018), 413–423. https://doi.org/10.1109/tvcg.2017.2744199

[22] Michael Gleicher, Danielle Albers, Rick Walker, Ilir Jusufi, Charles D.
Hansen, and Jonathan C. Roberts. 2011. Visual comparison for in-
formation visualization. Information Visualization 10, 4 (Sept. 2011),
289–309. https://doi.org/10.1177/1473871611416549

[23] Peter Hamilton and Daniel J. Wigdor. 2014. Conductor: enabling and
understanding cross-device interaction. In Proceedings of the ACM
Conference on Human Factors in Computing Systems. ACM, New York,
NY, USA, 2773–2782. https://doi.org/10.1145/2556288.2557170

[24] Jeffrey Heer and Maneesh Agrawala. 2006. Multi-Scale Banking to 45
Degrees. IEEE Transactions on Visualization and Computer Graphics
12, 5 (Sept. 2006), 701–708. https://doi.org/10.1109/tvcg.2006.163

[25] Jeffrey Heer and George Robertson. 2007. Animated Transitions in
Statistical Data Graphics. IEEE Transactions on Visualization and Com-
puter Graphics 13, 6 (Nov. 2007), 1240–1247. https://doi.org/10.1109/
tvcg.2007.70539

[26] Tom Horak, Sriram Karthik Badam, Niklas Elmqvist, and Raimund
Dachselt. 2018. When David Meets Goliath: Combining Smartwatches
with a Large Vertical Display for Visual Data Exploration. In Proceed-
ings of the ACM Conference on Human Factors in Computing Systems.
ACM, New York, NY, USA, 19:1–19:13. https://doi.org/10.1145/3173574.
3173593

[27] Steven Houben and Nicolai Marquardt. 2015. WATCHCONNECT:
A Toolkit for Prototyping Smartwatch-Centric Cross-Device Appli-
cations. In Proceedings of the ACM Conference on Human Factors in
Computing Systems. ACM, New York, NY, USA, 1247–1256. https:
//doi.org/10.1145/2702123.2702215

[28] Maria Husmann, Alfonso Murolo, Nicolas Kick, Linda Di Geronimo,
and Moira C. Norrie. 2018. Supporting out of office software develop-
ment using personal devices. In Proceedings of the ACM Conference on
Human-Computer Interaction with Mobile Devices and Services. ACM,
New York, NY, USA, 27:1–27:11. https://doi.org/10.1145/3229434.
3229454

[29] Mikkel R. Jakobsen and Kasper Hornbæk. 2013. Interactive Visu-
alizations on Large and Small Displays: The Interrelation of Dis-
play Size, Information Space, and Scale. IEEE Transactions on Vi-
sualization and Computer Graphics 19, 12 (Dec. 2013), 2336–2345.

https://doi.org/10.1109/tvcg.2013.170
[30] Waqas Javed and Niklas Elmqvist. 2012. Exploring the Design Space of

Composite Visualization. In Proceedings of the IEEE Pacific Symposium
on Visualization. IEEE, Piscataway, NJ, USA, 1–8. https://doi.org/10.
1109/pacificvis.2012.6183556

[31] Haojian Jin, Christian Holz, and Kasper Hornbæk. 2015. Tracko: Ad-
hoc Mobile 3D Tracking Using Bluetooth Low Energy and Inaudible
Signals for Cross-Device Interaction. In Proceedings of the ACM Sym-
posium on User Interface Software and Technology. ACM, New York,
NY, USA, 147–156. https://doi.org/10.1145/2807442.2807475

[32] Ulrike Kister, Konstantin Klamka, Christian Tominski, and Raimund
Dachselt. 2017. GraSp: Combining Spatially-aware Mobile Devices
and a Display Wall for Graph Visualization and Interaction. Computer
Graphics Forum 36, 3 (June 2017), 503–514. https://doi.org/10.1111/
cgf.13206

[33] Clemens N. Klokmose, James R. Eagan, Siemen Baader, WendyMackay,
and Michel Beaudouin-Lafon. 2015. Webstrates: Shareable Dynamic
Media. In Proceedings of the ACM Symposium on User Interface Software
and Technology. ACM, New York, NY, USA, 280–290. https://doi.org/
10.1145/2807442.2807446

[34] Ricardo Langner, Tom Horak, and Raimund Dachselt. 2018. VisTiles:
Coordinating and Combining Co-located Mobile Devices for Visual
Data Exploration. IEEE Transactions on Visualization and Computer
Graphics 24, 1 (Jan. 2018), 626–636. https://doi.org/10.1109/tvcg.2017.
2744019

[35] Ricardo Langner, Ulrike Kister, and Raimund Dachselt. 2019. Multiple
Coordinated Views at Large Displays for Multiple Users: Empirical
Findings on User Behavior, Movements, and Distances. IEEE Transac-
tions on Visualization and Computer Graphics 25, 1 (Jan. 2019), 608–618.
https://doi.org/10.1109/TVCG.2018.2865235

[36] Ricardo Langner, Ulrich von Zadow, TomHorak, Annett Mitschick, and
Raimund Dachselt. 2016. Content Sharing Between Spatially-Aware
Mobile Phones and Large Vertical Displays Supporting Collaborative
Work. In Collaboration Meets Interactive Spaces. Springer International
Publishing, 75–96. https://doi.org/10.1007/978-3-319-45853-3_5

[37] David Ledo, Saul Greenberg, Nicolai Marquardt, and Sebastian Boring.
2015. Proxemic-Aware Controls: Designing Remote Controls for Ubiq-
uitous Computing Ecologies. In Proceedings of the ACM Conference on
Human-Computer Interaction with Mobile Devices and Services. ACM,
New York, NY, USA, 187–198. https://doi.org/10.1145/2785830.2785871

[38] Bongshin Lee, Petra Isenberg, Nathalie Henry Riche, and Sheelagh
Carpendale. 2012. Beyond Mouse and Keyboard: Expanding Design
Considerations for Information Visualization Interactions. IEEE Trans-
actions on Visualization and Computer Graphics 18, 12 (Dec. 2012),
2689–2698. https://doi.org/10.1109/tvcg.2012.204

[39] Can Liu, Olivier Chapuis, Michel Beaudouin-Lafon, Eric Lecolinet, and
Wendy E. Mackay. 2014. Effects of display size and navigation type on
a classification task. In Proceedings of the ACM Conference on Human
Factors in Computing Systems. ACM, New York, NY, USA, 4147–4156.
https://doi.org/10.1145/2556288.2557020

[40] Nicolai Marquardt and Saul Greenberg. 2012. Informing the Design
of Proxemic Interactions. IEEE Pervasive Computing 11, 2 (Feb. 2012),
14–23. https://doi.org/10.1109/mprv.2012.15

[41] Nicolai Marquardt, Ken Hinckley, and Saul Greenberg. 2012. Cross-
device interaction via micro-mobility and f-formations. In Proceedings
of the ACM Symposium on User Interface Software and Technology. ACM,
New York, NY, USA, 13–22. https://doi.org/10.1145/2380116.2380121

[42] Will McGrath, Brian Bowman, David McCallum, Juan David Hincapié-
Ramos, Niklas Elmqvist, and Pourang Irani. 2012. Branch-explore-
merge: Facilitating Real-time Revision Control in Collaborative Vi-
sual Exploration. In Proceedings of the ACM Conference on Inter-
active Tabletops and Surfaces. ACM, New York, NY, USA, 235–244.

https://doi.org/10.1109/vast.2015.7347628
https://doi.org/10.1109/vast.2015.7347628
https://doi.org/10.1007/s00779-013-0727-2
https://doi.org/10.1007/s00779-013-0727-2
https://doi.org/10.1145/3242587.3242600
https://doi.org/10.1145/1357054.1357177
https://doi.org/10.1109/mc.2013.147
https://doi.org/10.1007/978-3-7091-2748-3_8
https://doi.org/10.1007/978-3-7091-2748-3_8
https://doi.org/10.1109/tvcg.2017.2744199
https://doi.org/10.1177/1473871611416549
https://doi.org/10.1145/2556288.2557170
https://doi.org/10.1109/tvcg.2006.163
https://doi.org/10.1109/tvcg.2007.70539
https://doi.org/10.1109/tvcg.2007.70539
https://doi.org/10.1145/3173574.3173593
https://doi.org/10.1145/3173574.3173593
https://doi.org/10.1145/2702123.2702215
https://doi.org/10.1145/2702123.2702215
https://doi.org/10.1145/3229434.3229454
https://doi.org/10.1145/3229434.3229454
https://doi.org/10.1109/tvcg.2013.170
https://doi.org/10.1109/pacificvis.2012.6183556
https://doi.org/10.1109/pacificvis.2012.6183556
https://doi.org/10.1145/2807442.2807475
https://doi.org/10.1111/cgf.13206
https://doi.org/10.1111/cgf.13206
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1109/tvcg.2017.2744019
https://doi.org/10.1109/tvcg.2017.2744019
https://doi.org/10.1109/TVCG.2018.2865235
https://doi.org/10.1007/978-3-319-45853-3_5
https://doi.org/10.1145/2785830.2785871
https://doi.org/10.1109/tvcg.2012.204
https://doi.org/10.1145/2556288.2557020
https://doi.org/10.1109/mprv.2012.15
https://doi.org/10.1145/2380116.2380121

https://doi.org/10.1145/2396636.2396673
[43] Dominik Moritz, Chenglong Wang, Greg L. Nelson, Halden Lin,

Adam M. Smith, Bill Howe, and Jeffrey Heer. 2019. Formalizing Visual-
ization Design Knowledge as Constraints: Actionable and Extensible
Models in Draco. IEEE Transactions on Visualization and Computer
Graphics 25, 1 (Jan. 2019), 438–448. https://doi.org/10.1109/tvcg.2018.
2865240

[44] Michael Nebeling. 2017. XDBrowser 2.0: Semi-Automatic Generation
of Cross-Device Interfaces. In Proceedings of the ACM Conference on
Human Factors in Computing Systems. ACM, New York, NY, USA, 4574–
4584. https://doi.org/10.1145/3025453.3025547

[45] Michael Nebeling and Anind K. Dey. 2016. XDBrowser: User-Defined
Cross-Device Web Page Designs. In Proceedings of the ACM Conference
on Human Factors in Computing Systems. ACM, New York, NY, USA,
5494–5505. https://doi.org/10.1145/2858036.2858048

[46] Seonwook Park, Antti Oulasvirta, Otmar Hilliges, Christoph Gebhardt,
Roman Rädle, Anna Maria Feit, Hana Vrzakova, Niraj Ramesh Dayama,
Hui-Shyong Yeo, Clemens N. Klokmose, and Aaron Quigley. 2018.
AdaM: Adapting Multi-User Interfaces for Collaborative Environments
in Real-Time. In Proceedings of the ACM Conference on Human Factors
in Computing Systems. ACM, New York, NY, USA, 184:1–184:14. https:
//doi.org/10.1145/3173574.3173758

[47] Thomas Plank, Hans-Christian Jetter, Roman Rädle, Clemens N. Klok-
mose, Thomas Luger, and Harald Reiterer. 2017. Is Two Enough?!
Studying Benefits, Barriers, and Biases of Multi-Tablet Use for Collab-
orative Visualization. In Proceedings of the ACM Conference on Human
Factors in Computing Systems. ACM, New York, NY, USA, 4548–4560.
https://doi.org/10.1145/3025453.3025537

[48] Zening Qu and Jessica Hullman. 2018. Keeping Multiple Views Con-
sistent: Constraints, Validations, and Exceptions in Visualization Au-
thoring. IEEE Transactions on Visualization and Computer Graphics 24,
1 (Jan. 2018), 468–477. https://doi.org/10.1109/tvcg.2017.2744198

[49] Roman Rädle, Hans-Christian Jetter, Jonathan Fischer, Inti Gabriel,
Clemens N. Klokmose, Harald Reiterer, and Christian Holz. 2018. Po-
larTrack: Optical Outside-In Device Tracking that Exploits Display
Polarization. In Proceedings of the ACM Conference on Human Fac-
tors in Computing Systems. ACM, New York, NY, USA, 497:1–497:9.
https://doi.org/10.1145/3173574.3174071

[50] Roman Rädle, Hans-Christian Jetter, Nicolai Marquardt, Harald Reit-
erer, and Yvonne Rogers. 2014. HuddleLamp: Spatially-Aware Mobile
Displays for Ad-hoc Around-the-Table Collaboration. In Proceedings of
the ACM Conference on Interactive Tabletops and Surfaces. ACM, New
York, NY, USA, 45–54. https://doi.org/10.1145/2669485.2669500

[51] Roman Rädle, Midas Nouwens, Kristian Antonsen, James R. Eagan, and
Clemens N. Klokmose. 2017. Codestrates: Literate Computing with
Webstrates. In Proceedings of the ACM Symposium on User Interface
Software and Technology. ACM, New York, NY, USA, 715–725. https:
//doi.org/10.1145/3126594.3126642

[52] Jonathan C. Roberts. 2007. State of the Art: Coordinated & Multiple
Views in Exploratory Visualization. In Proccedings of the IEEE Confer-
ence on Coordinated and Multiple Views in Exploratory Visualization.
IEEE, Piscataway, NJ, USA, 61–71. https://doi.org/10.1109/cmv.2007.20

[53] Jonathan C. Roberts, Panagiotis D. Ritsos, Sriram Karthik Badam, Do-
minique Brodbeck, Jessie Kennedy, and Niklas Elmqvist. 2014. Vi-
sualization beyond the Desktop—the Next Big Thing. IEEE Com-
puter Graphics and Applications 34, 6 (Nov. 2014), 26–34. https:

//doi.org/10.1109/mcg.2014.82
[54] Stephanie Santosa and Daniel Wigdor. 2013. A field study of multi-

device workflows in distributed workspaces. In Proceedings of the ACM
Conference on Pervasive and Ubiquitous Computing. ACM, New York,
NY, USA, 63–72. https://doi.org/10.1145/2493432.2493476

[55] Alper Sarikaya, Michael Correll, Lyn Bartram, Melanie Tory, and
Danyel Fisher. 2019. What Do We Talk About When We Talk About
Dashboards? IEEE Transactions on Visualization and Computer Graphics
25, 1 (Jan. 2019), 682–692. https://doi.org/10.1109/TVCG.2018.2864903

[56] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and
Jeffrey Heer. 2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE
Transactions on Visualization and Computer Graphics 23, 1 (Jan. 2017),
341–350. https://doi.org/10.1109/tvcg.2016.2599030

[57] Arvind Satyanarayan, Kanit Wongsuphasawat, and Jeffrey Heer. 2014.
Declarative interaction design for data visualization. In Proceedings of
the ACM Symposium on User Interface Software and Technology. ACM,
New York, NY, USA, 669–678. https://doi.org/10.1145/2642918.2647360

[58] Mario Schreiner, Roman Rädle, Hans-Christian Jetter, and Harald Re-
iterer. 2015. Connichiwa: A Framework for Cross-Device Web Ap-
plications. In Proceedings of the ACM Conference Extended Abstracts
on Human Factors in Computing Systems. ACM, New York, NY, USA,
2163–2168. https://doi.org/10.1145/2702613.2732909

[59] Shaishav Siddhpuria, Sylvain Malacria, Mathieu Nancel, and Edward
Lank. 2018. Pointing at a Distance with Everyday Smart Devices. In
Proceedings of the ACM Conference on Human Factors in Computing
Systems. ACM, New York, NY, USA, 173:1–173:11. https://doi.org/10.
1145/3173574.3173747

[60] Martin Spindler, Christian Tominski, Heidrun Schumann, and Raimund
Dachselt. 2010. Tangible views for information visualization. In Pro-
ceedings of the ACM Conference on Interactive Tabletops and Surfaces.
ACM, New York, NY, USA, 157–166. https://doi.org/10.1145/1936652.
1936684

[61] Ulrich von Zadow, Wolfgang Büschel, Ricardo Langner, and Raimund
Dachselt. 2014. SleeD: Using a Sleeve Display to Interact with Touch-
sensitive Display Walls. In Proceedings of the ACM Conference on In-
teractive Tabletops and Surfaces. ACM, New York, NY, USA, 129–138.
https://doi.org/10.1145/2669485.2669507

[62] Paweł Woźniak, Lars Lischke, Benjamin Schmidt, Shengdong Zhao,
and Morten Fjeld. 2014. Thaddeus: a dual device interaction space for
exploring information visualisation. In Proceedings of the ACM Nordic
Conference on Human-Computer Interaction. ACM, New York, NY, USA,
41–50. https://doi.org/10.1145/2639189.2639237

[63] Jishuo Yang and Daniel Wigdor. 2014. Panelrama: enabling easy speci-
fication of cross-device web applications. In Proceedings of the ACM
Conference on Human Factors in Computing Systems. ACM, New York,
NY, USA, 2783–2792. https://doi.org/10.1145/2556288.2557199

[64] Ji Soo Yi, Youn ah Kang, and John Stasko. 2007. Toward a Deeper
Understanding of the Role of Interaction in Information Visualization.
IEEE Transactions on Visualization and Computer Graphics 13, 6 (Nov.
2007), 1224–1231. https://doi.org/10.1109/tvcg.2007.70515

https://doi.org/10.1145/2396636.2396673
https://doi.org/10.1109/tvcg.2018.2865240
https://doi.org/10.1109/tvcg.2018.2865240
https://doi.org/10.1145/3025453.3025547
https://doi.org/10.1145/2858036.2858048
https://doi.org/10.1145/3173574.3173758
https://doi.org/10.1145/3173574.3173758
https://doi.org/10.1145/3025453.3025537
https://doi.org/10.1109/tvcg.2017.2744198
https://doi.org/10.1145/3173574.3174071
https://doi.org/10.1145/2669485.2669500
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1109/cmv.2007.20
https://doi.org/10.1109/mcg.2014.82
https://doi.org/10.1109/mcg.2014.82
https://doi.org/10.1145/2493432.2493476
https://doi.org/10.1109/TVCG.2018.2864903
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/2702613.2732909
https://doi.org/10.1145/3173574.3173747
https://doi.org/10.1145/3173574.3173747
https://doi.org/10.1145/1936652.1936684
https://doi.org/10.1145/1936652.1936684
https://doi.org/10.1145/2669485.2669507
https://doi.org/10.1145/2639189.2639237
https://doi.org/10.1145/2556288.2557199
https://doi.org/10.1109/tvcg.2007.70515

	Abstract
	1 Introduction
	2 Related Work
	Visual Data Analysis in Multi-Display Environments
	Multi-Device Frameworks & View Distribution

	3 Design Space: Interactive Visualizations in Multi-Device Environments
	Visualization Properties
	Visualization Relationships
	User Preferences
	Device Properties
	Device Relationships

	4 Heuristics for Deriving a View-Sensitive Distribution and Layout
	Grouping & Alignment Based on View Relationships
	View Adjustments and Device Assignments
	User Preferences

	5 The Vistribute System
	Underlying Systems and Dependencies
	Deriving Properties
	Distribution: Grouping, Assignment, and Adjustment
	Control Panel for User Adaptations

	6 Study: User-Created Distributions
	User Feedback and Findings

	7 Discussion & Future Work
	Limitations, Framework Extensions, and Evaluations
	From Heuristics Towards Formalism
	From Distribution Towards Visualization Generation

	8 Conclusion
	Acknowledgments
	References

