
Comparing Rendering Performance of
Common Web Technologies for Large Graphs

Tom Horak* Ulrike Kister† Raimund Dachselt‡

Interactive Media Lab, Technische Universität Dresden, Germany

ABSTRACT

In this work, we compared the established web-technologies SVG,
Canvas, and WebGL regarding their performance for large visual-
izations. Specifically, we compared these technologies by analyzing
the achievable frames per second (FPS) in exemplary implemen-
tations of a tree visualization with increasing number of elements.
We found that SVG and Canvas almost perform on par, with per-
formance drops starting at around 10,000 graphical elements, while
WebGL performs slightly better when showing text elements and
stays almost unaffected by increasing node quantities without text
elements. Finally, we discuss additional strategies to improve the
performance in certain situations.

Index Terms: Human-centered computing—Visualization—Visu-
alization systems and tools;

1 INTRODUCTION & BACKGROUND

Thanks to the continuous upward trend of cloud-based applications,
web-based visualization interfaces are also getting increasingly pop-
ular. Besides specialized stand-alone visualizations, e.g., in journal-
ism or research, also professional web-based business intelligence
platforms, such as SAP Analytics Cloud1, Microsoft Power BI2,
or Tableau Online3, incorporate rich visualization views. In order
to ensure a high usability, the interface must always run smoothly,
which can be challenging when displaying large visualizations or
many at the same time.

Although steadily improving, web browsers can easily experience
performance drops, e.g., when hitting a high number of elements to
render. Most of the established visualization libraries are based on
SVG, which add DOM nodes for each graphical element and, thus,
are heavily contributing to the overall DOM node count. As a result,
displaying element-heavy visualizations like large graphs may not be
possible in a performant way. Alternatively, other web technologies,
such as Canvas or WebGL, can be used. These technologies promise
a higher performance at the cost of an increased implementation
effort (in respect to, e.g., rendering, event-handling, consistency).

In the context of information visualizations, these performance
considerations are not new and had been considered before. While
the focus was on using Flash some years ago [3], it shifted to-
wards SVG and/or WebGL [1, 2, 5]. Four years ago, Andrews and
Wright [1] already performed a similar comparison to the one in this
paper: Using a parallel coordinates plot as reference visualization,
they compared SVG, Canvas, and WebGL, finding that WebGL out-
performed SVG and Canvas. Notably, they also reported that in their
test SVG and Canvas never reached FPS rates above 30, which is
an outdated value nowadays. More recently, WebGL is increasingly
considered for rendering visualizations. Ren et al. [5] proposed a
WebGL library which simplifies creating visualizations. Fang et

*e-mail: tom.horak@tu-dresden.de
†e-mail: ulrike.kister@tu-dresden.de
‡e-mail: raimund.dachselt@tu-dresden.de

Figure 1: The implemented tree allowed for flexible node quantities
(left, 100 nodes); each node showed an embedded bar chart (right).

al. [2] showcased a WebGL-based interface which is able to fluidly
render visualizations with up to millions of nodes.

However, there is not one technology that always should be used.
Instead, each technology comes with different implementation ef-
forts and challenges, thus, it is important to weigh effort against
required performance. In the following, we are investigating the dif-
ferences between SVG, Canvas, and WebGL regarding the resulting
interface performance, expressed by frames per second (FPS), when
(re-)rendering a visualization during user interactions. Additionally,
we also discuss different strategies to improve performance.

2 COMPARING RENDERING PERFORMANCES

Instead of pure rendering time (i.e., time until a view is loaded),
we opted to observe the frames per second (FPS) during typical
interactions to measure the performance: while a longer loading
time may be acceptable, a slow-acting or even laggy interface is
most certainly not. Therefore, FPS can more accurately represent
the perceived effects for the user. As an example visualization, we
utilized a tree visualization, similar to Value Driver Trees [4], as
trees and graphs are realistic examples that both can (i) consist of a
large number of nodes, and (ii) easily be scaled for testing.

Implementation. For each technology, we implemented the
same tree visualization. The nodes of the tree consisted of both
multiple graphical elements and multiple text elements (simulating
an embedded bar chart), resulting in a total of 15 elements per tree
node. The tree was layouted with a static, pre-defined algorithm;
edges were shown as lines with a small box and an abstract label in
the center (Fig. 1). The number of nodes, and thus the size of the
tree, was set through a URL parameter. In total, each node caused
around 20 graphical elements to be drawn (elements of node plus cor-
responding edges). We incorporated some libraries to simplify the
creation of the chart: we used D34 for the SVG version, PixiJS5 for
the WebGL version, and no library for the Canvas implementation.

Procedure. We considered the FPS during zoom and pan inter-
actions, which are common interactions for many visualizations,
including large graph visualizations. In other words, we tested how
many nodes we can display until the browser is no longer capa-
ble of fluidly translating (pan) or re-rendering (zoom) the current
scene with 60 FPS. Concretely, after loading the graph, we applied a
fixed 20-seconds-sequence of zoom and pan interaction to the graph.
Using the MouseRecorder tool6, the corresponding mouse events
were recorded before and replayed for each trial. While replaying

1sap.com/products/cloud-analytics, 2powerbi.microsoft.com
3tableau.com/products/cloud-bi, 4d3js.org, 5pixijs.com
6http://www.mouserecorder.com/

https://www.sap.com/products/cloud-analytics.html
https://powerbi.microsoft.com/en-us/
https://www.tableau.com/products/cloud-bi
https://d3js.org/
http://www.pixijs.com/


Figure 2: Performance decreased above 400 nodes, with SVG and
Canvas performing similar and both worse than WebGL. For WebGL,
the performance decrease only occurred when showing text labels.

this interaction sequence, we retrieved the frame rates through the
built-in developer tools of Chrome or Firefox and logged the average
FPS. All trials were run on the same laptop (Windows 10 64-bit,
full-HD resolution, Intel i7-7500U CPU, integrated graphics, 16 GB
RAM).

Findings. Our measurements show that performance losses
started to occur above 400 nodes (ca. 8,000 elements) for all three
technologies. SVG and Canvas perform almost equally, while the
drop for WebGL is less extreme, The first aspect is interesting, as it
is often assumed that Canvas is faster than SVG, since the overhead
of adding DOM elements is removed. Although this could still be
true for initial rendering time, there is no advantage regarding FPS—
which is similar to the findings of Andrews and Wright [1] in 2014.
Concerning WebGL, the performance drop only occurs when also
displaying text. Without text elements, the FPS is not affected by
the number of nodes; even in an extreme setup of 400,000 nodes (ca.
8 million elements) the visualization ran with 50 FPS. The reason
for this difference is that in WebGL text can either be rendered and
stored as an image (as in our example), which reduces performance,
or must be laboriously put together with graphical primitives, which
increases implementation effort.

Between Firefox and Chrome, we did not find notable differences
regarding FPS, with the exception of SVG in Firefox: when starting
to perform the interactions, the browser internally applied style
changes, which blocked interface updates for a few seconds.

3 STRATEGIES FOR PERFORMANCE IMPROVEMENTS

Similar to improving the WebGL performance by avoiding text
elements, there are several characteristics for each technique that
can be exploited in order to gain additional performance benefits.

Flexible Level of Detail. As the the number of elements is the
key performance driver, and in many situations not all elements
are of interested to the user, one approach is to temporarily remove
elements from the scene that are not required currently. For instance,
when zoomed out, details of the nodes can be hidden (e.g., labels,
embedded details, decorative elements), which then drastically re-
duces the number of graphical elements. Especially in SVG, this
can easily be implemented by utilizing the CSS style property.

Asynchronous Tile Loading. Similar to web-based map applica-
tions, asynchronous tile loading can be used to split up the rendering
effort to multiple threads and keep the interface responsible anytime.
Traditionally, this approach involved a server that renders and sends
the files to the client. However, thanks to improving web standards,
this can also be done purely on client side. Specifically, the client
has to start multiple threads (Webworker API7), where each of them
initializes a headless browser rendering instance (Offscreen Canvas
API8). These threads process than chunks of the scene and return
the rendered tile. Especially the Canvas API can relatively easily

7html.spec.whatwg.org/multipage/workers.html#workers
8html.spec.whatwg.org/multipage/canvas.html#the-offscreencanvas-

interface

be combined with this approach. With this approach, the interface
always runs at 60 FPS (since all rendering is performed in sepa-
rated threads) and the latency for loading tiles becomes the main
performance indicator. In an early prototype, we were able to get a
latency below 1 second for graphs with more than 400,000 nodes.
In general, the latency itself is affected by the number of nodes but
also strongly by the zoom level. Finally, it is important to note that
the Offscreen Canvas feature is currently experimental, thus browser
support is lacking and implementation details might change in the
future9.

Combined Approaches. To some extent, it is also possible to
combine the different approaches as well as technologies. For in-
stance, to avoid the issues with text in WebGL, a two-folded im-
plementation could be realized, where WebGL is used for graphic
elements and Canvas for text elements. Thereby, the main chal-
lenge is to keep the both scenes synchronized to make sure the text
elements are at the right location.

4 DISCUSSION AND CONCLUSION

When implementing web-based visualizations, it is important to
thing about the performance requirements of the interface. This
requirement can mainly be derived from the number of elements
that a visualization—or an interface in total—has to show while
maintaining a FPS rate close to 60. For SVG and Canvas, a rough
limit for a fluid interface is 10,000 graphical elements (5̃00 nodes in
our example). Of course, this number can fluctuate when changing
the setup, e.g., to mobile devices or ultra-high resolution displays.
For most scenarios, this limit should be feasible. For instance,
most business intelligence applications incorporate mainly simpler
visualization, which consists of a few hundred graphical elements.

When on the edge, additional strategies for performance improve-
ments can be considered. For instance, incorporating a flexible level
of details can provide a notable performance boost with a low im-
plementation effort for SVG. If a significantly higher performance
is required, WebGL is the best solution, especially when keeping in
mind its limitations of text rendering. As a promising alternative,
the asynchronous tile loading is a future strategy that can be used as
soon as browser support improves.

ACKNOWLEDGMENTS

We want to acknowledge Robin Thomas for his work on this topic.
Also, we thank SAP SE and specifically Thomas Beck for the valu-
able discussions on VDTs and web-based visualizations. This work
was supported in part by DFG grant GEMS 2.0 (DA 1319/3-3).

REFERENCES

[1] K. Andrews and B. Wright. Fluiddiagrams: Web-based information
visualisation using javascript and webgl. In EuroVis - Short Papers. The
Eurographics Association, 2014. doi: 10.2312/eurovisshort.20141155

[2] D. Fang, M. Keezer, J. Williams, K. Kulkarni, R. Pienta, and D. H. Chau.
Carina: Interactive million-node graph visualization using web browser
technologies. In Proceedings of the 26th International Conference
on World Wide Web Companion, pp. 775–776. ACM, 2017. doi: 10.
1145/3041021.3054234

[3] R. C. Hoetzlein. Graphics performance in rich internet applications.
IEEE Computer Graphics and Applications, 32(5):98–104, sep 2012.
doi: 10.1109/mcg.2012.102

[4] T. Horak, U. Kister, and R. Dachselt. Improving value driver trees to
enhance business data analysis. In Poster Program of the 2017 IEEE
Conference on Information Visualization (InfoVis), 10 2017.

[5] D. Ren, B. Lee, and T. Hllerer. Stardust: Accessible and transparent GPU
support for information visualization rendering. Computer Graphics
Forum, 36(3):179–188, jun 2017. doi: 10.1111/cgf.13178

9caniuse.com/#feat=offscreencanvas

https://html.spec.whatwg.org/multipage/workers.html#workers
https://html.spec.whatwg.org/multipage/canvas.html#the-offscreencanvas-interface
https://html.spec.whatwg.org/multipage/canvas.html#the-offscreencanvas-interface
http://dx.doi.org/10.2312/eurovisshort.20141155
http://dx.doi.org/10.2312/eurovisshort.20141155
http://dx.doi.org/10.2312/eurovisshort.20141155
http://dx.doi.org/10.2312/eurovisshort.20141155
http://dx.doi.org/10.2312/eurovisshort.20141155
http://dx.doi.org/10.2312/eurovisshort.20141155
http://dx.doi.org/10.2312/eurovisshort.20141155
https://dx.doi.org/10.2312/eurovisshort.20141155
http://dx.doi.org/10.1145/3041021.3054234
http://dx.doi.org/10.1145/3041021.3054234
http://dx.doi.org/10.1145/3041021.3054234
http://dx.doi.org/10.1145/3041021.3054234
http://dx.doi.org/10.1145/3041021.3054234
http://dx.doi.org/10.1145/3041021.3054234
http://dx.doi.org/10.1145/3041021.3054234
http://dx.doi.org/10.1145/3041021.3054234
https://dx.doi.org/10.1145/3041021.3054234
https://dx.doi.org/10.1145/3041021.3054234
http://dx.doi.org/10.1109/mcg.2012.102
http://dx.doi.org/10.1109/mcg.2012.102
http://dx.doi.org/10.1109/mcg.2012.102
http://dx.doi.org/10.1109/mcg.2012.102
http://dx.doi.org/10.1109/mcg.2012.102
https://dx.doi.org/10.1109/mcg.2012.102
http://dx.doi.org/10.1111/cgf.13178
http://dx.doi.org/10.1111/cgf.13178
http://dx.doi.org/10.1111/cgf.13178
http://dx.doi.org/10.1111/cgf.13178
http://dx.doi.org/10.1111/cgf.13178
http://dx.doi.org/10.1111/cgf.13178
http://dx.doi.org/10.1111/cgf.13178
https://dx.doi.org/10.1111/cgf.13178
https://caniuse.com/#feat=offscreencanvas

	Introduction & Background
	Comparing Rendering Performances
	Strategies for Performance Improvements
	Discussion and Conclusion

