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Abstract
Technologies for spatial and proxemic interaction with mo-
bile devices depend inherently on the ability to obtain in-
formation on the device’s position (i.e., to localize the de-
vice). Numerous technologies have been proposed for this,
each with their own strengths and weaknesses, but decid-
ing which one to use in a particular context is challenging.
In this paper, we examine current technologies for the local-
ization of mobile devices and categorize them into a taxon-
omy based on their technological similarity. By considering
numerous properties (e.g., precision, battery usage, scal-
ability, required infrastructure, deployment) and discussing
how these impact usability in different scenarios, we aim to
allow other researchers informed decisions on the localiza-
tion techniques to use for a particular application case.

Author Keywords
Localization Techniques; in the wild; Mobile Devices

ACM Classification Keywords
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Introduction
Research on spatial interaction with mobile devices has
mostly used instrumented devices and rooms such as
marker-based tracking [2, 11, 32] (or, in the early days, teth-



ered devices [30]) to determine devices’ positions. While
this approach enables research on interaction, deploying
the developed techniques in the wild has additional require-
ments: Among others, instrumentation of the mobile device
will not be possible in most cases, mobile power consump-
tion and scalability become an issue, and deployment ef-
forts as well as costs need to be considered. Further, re-
quirements often differ depending on the application case.
As an example, while many single-device outdoor applica-
tions (e.g., wayfinding) work well with coarse positioning,
indoor applications (e.g., pointing for data transfer meth-
ods [11, 32]) rely on much more precise positioning, while
the range of the technique can be as low as a few meters.

In this position paper, we first examine important properties
for “in the wild” localization techniques (see Table 1). Based
on these properties, we then categorize existing localization
techniques into a taxonomy and present these in a tabular
form (Table 2). We color-coded the properties in the table to
allow to quickly recognize advantages and challenges of the
different techniques. Finally, we discuss the requirements of
different application cases, with the goal to enable informed
decisions on the techniques to use.

Signal Spectrum
radio-, light-, or sound-based

Technical Base
hardware or software base used

Computation Method
position determination method

Localization Approach
positioning or tracking

Precision
metric precision based on litera-
ture, ranging from mm to >m

Range
estimated metric range, ranging 
from km to m

Battery Usage
estimated usage, ranging from 
none to high

Scalability
scalibility of number of devices, 
limited or ∞ (unlimited)

Required Infrastructure
infrastructure used, rated by 
installation effort

Device Instrumentation
required device instrumentation

Deployment Effort
estimated effort of deployment 
process; none to high

Deployment Costs
estimated costs of deployment; 
none to high

Examples
related literature

Challenges
existing/important challenges

Table 1: Properties and their
possible values for Table 2

Properties of Localization Techniques
First of all, most localization techniques are based on the
usage of signal waves and differ in the signal spectrum
used (e.g., radio, light, sound). This spectrum heavily influ-
ences other properties and defines also the main source of
disturbance—other waves in the same spectrum (e.g., sun
light). All techniques build upon a certain technical base
and use a specific computation method. Depending on
the latter one, the localization approach can be either a
positioning or a tracking approach, i.e., the position can be
calculated by the device itself or by the infrastructure. We
consider three main performance properties resulting from

the signal, technical base and computation method used:
The precision ranging from millimeters to multiple meters,
the signal range from a few meters to many kilometers, and
the extra device battery usage from none to high.

Especially important for "in the wild" application scenarios
are properties influencing the deployment of spatial track-
ing. Regarding the hardware, this involves the scalability
(i.e., if more devices can be easily incorporated), the re-
quired infrastructure (i.e., none, existing, or additional),
as well as the the need for additional instrumentation
for consumer devices used. Regarding the scalability, we
only differentiate between a (practical) unlimited and a lim-
ited scalability (e.g., limited by increasing synchronization
problems). Based on the required deployment steps and
hardware, we roughly rated all techniques regarding their
relative deployment effort and deployment costs com-
pared to other techniques from none to high. These deploy-
ment properties can only serve as rough indicator. Finally,
we also list examples from related work and name existing
main challenges of the localization techniques.

Localization Techniques
For our taxonomy, we use the signal spectrum as main cat-
egory and distinguish between three groups: radio, light,
and (ultra-)sound (top level of taxonomy). In each group,
we further differentiate between which technical base (2nd
level) and computation method (3rd level) is used. We char-
acterize the resulting localization techniques based on the
properties described before (see also property overview in
Table 1). Furthermore, we color-coded—and thus rated—all
property values in three steps (green, yellow, red) roughly
indicating their usability. We do not consider techniques
based on inertial sensors only (e.g., gyroscope), as they
lack the ability of localization relative to other devices. The
complete taxonomy is shown in Table 2 at page 3.
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GPS TDOA positioning > m km low ∞ existing none none none car navigation outdoor only

GSM
RSSI positioning > m km low ∞ existing none none none - mainly in urban regions

fingerprinting positioning m km low ∞ existing none high none [3, 20] mainly in urban regions, reference model

WiFi

RSSI positioning m > m low ∞ existing none none low [1, 6] -

fingerprinting positioning < m > m low ∞ existing none high low [1, 3, 16, 35] reference model

TOA/TDOA positioning m > m mid ∞ existing none none low [34] multipath effects

AOA positioning < m m mid ∞ existing none none low [12, 33] multipath effects

Bluetooth
RSSI positioning cm m low limited none none mid none [9] adaptive signale strength

fingerprinting positioning cm m low limited none none high low [3, 10] adpative signale strength, reference model

lig
ht

Device 
RGB Cam

triangulation positioning cm m high ∞ markers none low low [15] limited field of view, marker placement

RSSI positioning m > m mid ∞ landmarks none high low [24] number and type of required landmarks

feat. detection positioning cm > m high ∞ none none none none [4], Proj. Tango calibration / training

External 
RGB Cam

triangulation tracking mm > m none limited camera markers mid mid - limited field of view

rect. detection tracking cm > m none limited camera none low low [26] disturbance from overhead lights

External 
IR Cam

triangulation tracking mm > m none limited cameras markers mid high OptiTrack, Vicon calibration

depth (TOF) tracking cm > m none limited camera none low mid [26, 27] limited field of view

(u
ltr

a-
)s

ou
nd

Audio 
Devices

fingerprinting positioning m > m mid ∞ none none high none [25, 28, 29] reference model

TOA tracking cm > m low limited micros none mid mid [18, 22] synchronization, multipath effects

TOA positioning cm > m mid ∞ speaker none mid low [13, 19] synchronization, multipath effects

RT-TOA positioning cm > m mid limited none none none none [9, 16, 21, 23] range internal hardware, multipath effects

TDOA tracking cm > m low limited micros none mid mid [7] multipath effects

TDOA positioning cm > m mid ∞ speaker none mid low [13, 14, 17] multipath effects

 

Table 2: Localization techniques and their color-coded properties
grouped by signal spectrum and their technical base.



Radio-based
Many existing systems use radio frequency signals for lo-
calization, as current commodity hardware support them
by default. Most prominently, GPS provides reliable local-
ization at a precision of multiple meters in outdoor scenar-
ios. For indoor scenarios, GSM base stations, WiFi access
points and Bluetooth devices can serve as a technical base
for localization providing up to meter, sub-meter or centime-
ter precision respectively. Received signal strength indica-
tors (RSSI) can both be used to directly infer distance [1,
6, 9] or be compared as fingerprint to a prerecorded model
of the signal in an area [1, 3, 10, 16, 20, 35]. Techniques
leveraging the angle of arrival (AOA) [12, 33], time of arrival
(TOA) or time difference of arrival (TDOA) [34] for multiple
sources have also been explored.

Light-based
Optical techniques for localization typically incorporate ei-
ther standard video cameras or infrared (IR) cameras and
can be marker-based or not. Further, they can be distin-
guished into techniques either using an internal camera
(i.e., device camera) or external cameras, thus between po-
sitioning and tracking systems respectively. For the latter
one, professional setups like OptiTrack1 or Vicon2 usually
track IR-reflecting markers, thus requiring instrumentation
of the devices as well as the environment (i.e., placing cam-
eras). Recently, low-cost—but less precise—depth-camera-
based systems were presented [26, 27]. These are marker-
less and thus can be more easily deployed.

Positioning systems using an internal device camera come
with the cost of higher battery drain, but often also incor-
porate a reduced deployment effort. The device camera
detects prior installed reference points, e.g., light land-

1https://www.optitrack.com/
2https://www.vicon.com

marks [24], markers [15], or image patterns [4], and the
device can calculate its position based on these points.
With Google’s Project Tango3 there also exists a solution
that does not require any installed reference points but de-
tect features of the environment by its own. However, to
allow an absolute localization, an initial calibration step is
required.

(Ultra-)sound-based
Sound-based techniques are an interesting alternative to
the well-established radio- and light-based localization pro-
viding centimeter precision at low deployment efforts. Lo-
calization can be calculated by determining the distance
to reference points from TOA [13, 18, 19, 22] or TDOA [7,
13, 14, 16, 17]. Due to the relatively slow propagation of
sound, even standard speakers and microphones achieve
sufficient measurement accuracy. Therefore, based on the
same techniques both positioning [13, 14] and tracking [7,
18, 22] systems are possible. Using round-trip time of ar-
rival (RT-TOA) [9, 21, 23] localization can also be performed
among devices without any external infrastructure, how-
ever, providing only relative positioning in this case (RT-TOA
can also be used with fixed infrastructure). Similar to RSSI-
based fingerprinting, sound profiles of ambient noise [25]
and purposely installed sound sources [28] can be utilized
for positioning at room level. By recording the reflections of
sound signals emitted by the device itself, even centimeter
precision is possible [29]. However, changes in tempera-
ture and humidity affect sound propagation requiring to take
environmental changes into account.

Improving Localization with Sensor Fusion
Combining different localization techniques with comple-
mentary attributes can help to improve overall performance.
A common scenario is to pair a reliable but less accurate

3https://www.google.com/atap/project-tango/

https://www.optitrack.com/
https://www.vicon.com
https://www.google.com/atap/project-tango/


technique with a less reliable, accurate one (e.g., [3, 9, 13,
16, 26]). Choosing techniques from different signal cate-
gories not only evades mutual interference, but also allows
to compensate interference in one of them. Further, also
internal device sensors (e.g., gyroscope) can be used to
enhance localization with fine-grained movement and rota-
tion detection (e.g., Project Tango or [9]).

Discussion & Conclusion
The required properties of localization techniques depend
heavily on the application case (e.g., home, office, indoor
public spaces, outdoor). For instance, in the context of pri-
vate or home applications (e.g., [2]) the localization must
come at low costs, but can involve instrumentation of rooms
or devices and must not support a large number of devices.
In offices, the number of devices is still manageable, but de-
vice instrumentation is probably not appropriate. One spe-
cific application scenario are smart meeting rooms, which
might support pointing interactions [4, 5, 8], thus resulting in
the highest demand on precision. Both personal and busi-
ness application cases deploy localization techniques in
controlled environments with minor sources of disturbance
and small number of devices.

In contrast, indoor public spaces (e.g., shopping mall, mu-
seum) are crowded places in which localization techniques
must be able to handle many devices at the same time in
a larger area. These places often incorporate many bar-
riers (e.g., walls, people) and manifold sources of distur-
bance, especially for light-based localization techniques
(e.g., light installations, reflecting surfaces). A common ap-
plication case is enabling cross-device interactions between
a larger display and personal devices, e.g., to view, explore,
or transfer information [4, 31]. In shopping malls, the instru-
mentation of devices is not feasible and additional infras-
tructure may have to fulfill some aesthetic requirements,

whereas in museums specialized devices can be handed
out and visible cameras are more accepted. As example
environments for “in the wild” localization, both indoor and
outdoor public spaces usually also have to support a wider
variety on devices, thus rely more on commodity solutions
than personal or business scenarios.

Taking this further, an ideal localization technique would
be characterized by requiring only existing consumer hard-
ware, a minimal deployment effort, an unlimited scalability,
few sources of disturbance, a low battery usage, and, of
course, a high precision. This mainly rules out light-based
techniques, as they often require a comprehensive instru-
mentation or drain the battery. In contrast, radio-based
techniques can often be easily deployed as they rely on
existing hardware. However, the precision is poorer as for
light-based techniques. Sound-based techniques could
evolve as an alternative between these two established
ones as they offer up to centimeter precision with reason-
able deployment effort. Deploying “in the wild” localization
systems in a larger scale also raises questions if and how
this could affect our society, e.g., regarding privacy con-
cerns (tracking vs. positioning; who has access to tracking
data) or environmental aspects (such as noise pollution).

Still, choosing the right localization technique depends on
the specific application and the resulting interaction style.
We are confident that our discussion and presented taxon-
omy in Table 2 can help to identify the most suitable can-
didates and thus supports the process of deciding which
localization technique to use for a specific application case.
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