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Abstract

Graph exploration and editing are still mostly considered independently and sys-
tems to work with are not designed for todays interactive surfaces like smartphones,
tablets or tabletops. When developing a system for those modern devices that sup-
ports both graph exploration and graph editing, it is necessary to 1) identify what
basic tasks need to be supported, 2) what interactions can be used, and 3) how
to map these tasks and interactions. This technical report provides a list of basic
interaction tasks for graph exploration and editing as a result of an extensive sys-
tem review. Moreover, different interaction modalities of interactive surfaces are
reviewed according to their interaction vocabulary and further degrees of freedom
that can be used to make interactions distinguishable are discussed. Beyond the
scope of graph exploration and editing, we provide an approach for finding and eval-
uating a mapping from tasks to interactions, that is generally applicable. Thus, this
work acts as a guideline for developing a system for graph exploration and editing
that is specifically designed for interactive surfaces.

1 Introduction

Graphs play an important role in many application domains. Common examples are the
analysis of social networks or the illustration of biological dependencies. When working
with abstract data like graphs, visualization systems are often used. There are numerous
systems with a broad repertoire of functions supporting users in exploring graphs. These
systems have in common, that they are designed for desktop environments where users
interact with mouse and keyboard only. Although modern interactive surfaces (e.g.,
smartphones, tablets, tabletops) have big potential for visualization and replace desktop
computers more and more, they are currently not supported by graph exploration sys-
tems. Beside graph exploration, there are various visualization systems supporting users
in editing graphs. Although most of these systems are also designed for desktop environ-
ments, there are first approaches that utilize interactive surfaces [1, 2, 8, 11, 12, 14, 19].
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The visual analysis of graphs includes tasks for exploring and editing the data [16].
Visualization systems supporting both aspects to the same extent are currently not
provided. Users often have to work with several systems side-by-side and switch between
them frequently, which complicates analysis. Thus, there is a need for visualization
systems that support both graph exploration and graph editing. This technical report
serves as a guideline to conceive such a system and focuses on answering the following
questions:

1. What tasks to support? The functionality needed by such a system can be
determined through the tasks users have to accomplish when exploring or editing
graphs. There are taxonomies that classify tasks involved in graph analysis [17, 18]
and user intents in general [27], but it is not clear what set of tasks should be
generally provided to support exploring and editing of graphs. Thus, a semantic
description of basic tasks for graph exploration and graph editing is needed. As a
result of extensive reviews of different existing systems and task taxonomies, this
report provides a list and classification of basic tasks.

2. What interactions can be used? Modern human-computer interaction with
interactive surfaces encompasses different interaction modalities that are inspired
from real world interaction. These include touch-, pen- and tangible interaction.
Especially for graph exploration and editing, there is no systematic description of
what interactions are generally possible with either of these modalities. This report
reviews interaction vocabularies for the mentioned modalities and further discusses
degrees of freedom for making individual interaction gestures distinguishable.

3. How to map tasks to interactions? In order to conceive interactions, the
tasks need to be mapped to gestures. Beside a generic mapping approach that
is applicably in general, this report states the difficulty of such a mapping and
provides examples.

Before going into detail concerning the three question, we will introduce the required
basics.

2 Terms and Systems

In this section, we clarify terms used in the following and describe visualization systems
we reviewed for our approach.

Terms

Graph A graph is an abstract data structure and can be defined as ordered pair G =
(V,E) comprising a set V of nodes together with a set E of edges, where each edge is
related to two nodes.
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(a) Graph exploration using CGV (b) Graph exploration using
Gephi

(c) Graph exploration using
Tulip. Detail from figure 16
in [3]

(d) Graph exploration using Cy-
toscape

(e) Graph exploration using Pajek (f) Graph exploration us-
ing Nodes3D

Figure 1: Different graph visualization systems that support graph exploration: (a)
CGV, (b) Gephi, (c) Tulip, (d) Cytoscape, (e) Pajek (f) Nodes3D.

Interaction functionality With the term interaction functionality, we refer to the range
of operations or functions that can be performed interactively via the user interface of
a system. A specific operation for instance can be the selection of a node.

Interaction modality An interaction modality is a communication channel between the
human and the computer, through which users can provide input. An example is the
mouse or keyboard.

Gesture With the term gesture, we refer to a concrete user action in a specific modality,
for instance a left click on a mouse button.

Systems for graph exploration and editing

To identify a set of basic tasks, it was necessary to analyze existing systems for graph
exploration and graph editing. The systems we considered are briefly described in the
following with their individual emphasis.

Visualization Systems for Graph Exploration

Several system exist that enable visual graph exploration. Some of these systems orig-
inated from research (e.g., CGV [24], Gephi [4], Tulip [3] and Cytoscape [21]). All of
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these are designed as desktop applications whereby users interact with mouse and key-
board through a WIMP (windows, icons, menus, pointers) interface. For our approach,
we analyzed a set of well-known systems.

CGV is a system with emphasis on interaction, that uses multiple interlinked views
[24]. This system is able to represent clustered graphs and allows exploration of lo-
cal regions of interest using interactive lens techniques. Gephi is a graph exploration
framework with broad functionality [4]. It supports users in analyzing general graphs,
clustered graphs, graphs where attributes are associated with nodes or edges, and dy-
namic graphs. A general system and library for visual graph exploration with the focus
on research prototyping as well as development of end-user applications is Tulip [3].
Similar to CGV and Gephi, Tulip is able to display different aspects of the data at the
same time using multiple interlinked views.

A graph visualization system especially designed for the visualization and analysis
of molecular interaction networks and biological pathways is Cytoscape [21]. Using
cytoscape it is possible to integrate networks with annotations, gene expression profiles
and other state data. Pajek is a graph visualization system with the focus on supporting
graph abstraction by recursive decomposition of large graphs into several smaller graphs,
and providing a selection of graph drawing algorithms [5]. With the graph visualization
system Nodes3D, it is possible to visualize graphs with 3D node-link diagrams. The
main focus of this system is the analysis of brain data. Figure 1 presents screenshots of
the mentioned systems displaying sample data sets.

Visualization Systems for Graph Editing

Direct editing of node-link diagrams is supported by a variety of systems. Most of these
systems are not limited to graphs and node-link diagrams but support diagramming
in general. Anyhow, many different types of diagrams are based on objects that are
connected with lines, for instance UML-Diagrams, business process diagrams, or entity-
relationship diagrams, and can be interpreted as node-link diagrams. Similar to existing
graph visualization systems, these systems are designed for desktop environments. User
interaction is mainly based on drag and drop gestures using mouse input. We selected
six established systems for analysis.

yEd Graph Editor is a system with focus on node-link diagram editing. Besides
manual editing it provides a library of good layout algorithms. Similar to yEd Graph
Editor, GoVisual Diagram Editor’s focus is on node-link diagrams and the support
of automatic layouting. It supports clustered graphs via nested node-link diagrams. MS
Visio and Dia Diagram Editor are diagramming applications that provide templates
for different kinds of diagrams, e.g., flow diagrams, organization charts or block diagrams.
Their focus is on supporting users in designing diagrams quickly and with little effort.
Visual Paradigm for UML and Enterprise Architect are two systems that support
visual modelling. Although their focus is on modeling with UML diagrams, they also
support other technologies like business process modelling with BPMN.

Figure 2 presents screenshots of the described system displaying node-link diagrams of
a sample data set. In the following section, we identify basic tasks for graph exploration
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(a) Graph editing using yEd Graph
Editor

(b) Graph editing using MS Vi-
sio

(c) Graph editing using GoVisual
Diagram Editor

(d) Graph editing using Dia Dia-
gram Editor

(e) Graph editing using Visual
Paradigm for UML

(f) Graph editing using Enter-
prise Architect

Figure 2: Different visualization systems that support graph editing: (a) yEd Graph
Editor, (b) MS Visio, (c) GoVisual Diagram Editor, (d) Dia Diagram Editor,
(e) Visual Paradigm for UML, (f) Enterprise Architect.

and editing based on analyzing the systems listed above.

3 Basic Tasks for Exploring and Editing Graphs

In order to identify a set of basic tasks, we analyzed the graph visualization systems
listed in section 2 according to their functionality. Tasks that could be interactively
accomplished were documented and categorized. With regard to graph exploration, we
used the well-established categories from Yi et al. [27] which are: select, explore, recon-
figure, encode, abstract and elaborate, filter, and connect. With regard to graph editing
such a well-established categorization does not exist. Hence, we distinguish between the
following classes for editing: create, insert, update, delete, explore, select, and miscel-
laneous categories. In order to separate basic tasks from tasks for specific scenarios,
we used the following pragmatic approach: We consider a task to be basic, if at least
three systems share functions to accomplish this task. Since the focus of the reviewed
systems differs and thus also their functionality, this approach can reveal tasks that are
supported across systems, i.e., basic tasks. We further categorized user interactions to
operate the tasks according to their interaction modes [23] in stepped, continuous or
composite interaction. The category stepped interaction describes interactions consist-
ing of a series of individual steps (e.g., a mouse double click), continuous interactions
are operated without interruptions (e.g., a mouse drag). Composite interactions are a
combination of stepped and continuous interactions (e.g., a mouse click followed by a
mouse drag).
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Basic Tasks for Graph Exploration

In the following, a categorization of basic tasks along with the most frequently used
interaction mode (in brackets) for every task is presented. Individual tasks are described
and examples for interaction techniques supporting these tasks in the reviewed systems
are given.

Select Tasks: By performing selection tasks, users mark data items of interest to keep
track of them. When working with graphs, items to be selected can be nodes, edges,
subgraphs, associated data attributes or any set of these.

• Select node (mostly stepped) / Deselect node (always stepped): When selecting a
node, users specify their interest in this node. Selecting a node is an essential task
and it contributes to various higher level tasks, e.g. to view a nodes attributes or
characteristics. With deselecting a node, the users signalizes that this node is not
of interest anymore. In most of the systems, a node can be selected with a mouse
click or a selection frame.

• Select multiple nodes (varying between all three) / Deselect multiple node (always
stepped): These task are accomplished similarly to the above tasks just for sets of
nodes.

• Temporary select node (varying between all three) / Temporary select edge (vary-
ing between all three). With these tasks individual nodes or edges are specified as
temporary interesting. An exemplary interaction technique supporting this task is
to hover a node or an edge in the visualization with a mouse cursor. The temporary
interest is often supported by highlighting the affected node or edge.

Explore Tasks: By performing exploration tasks, users examine global characteristics
and different subsets of the data set (details), for instance a subgraph of a node-link
diagram that is currently placed off-screen.

• Pan view (mostly continuous): This navigation task enables users to move the
current view parallel to the view plane in order to examine different subsets of the
visualized data. Dragging scrollbars or moving the background of the visualization
itself are commonly used interaction techniques in this regard.

• Center view (always stepped): A task to center the view on a specific point of
interest. This can be the center of the initial view or the position of a node for
example. This task is mostly supported by selecting a menu option or clicking on
a dedicated button.

• Rotate view (mostly composite): A task to rotate the view around a specific axis
with a certain angle. In some systems, this can be achieved trough a menu selection
followed by a mouse drag that specifies the rotation angle.
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• Zoom view (mostly continuous): This navigation task enables users to zoom into or
out of specific content in the current view. Rotating the mouse wheel is a common
way to achieve zooming.

Reconfigure Tasks: When reconfigure tasks are accomplished, users get a different
perspective on a subset of the data. Changing the spatial layout of a node-link diagram
by applying a layout algorithm is one example.

• Move selected nodes (mostly composite): This task is related to node-link diagrams
where users want to change individual node positions interactively. Often, this
can be accomplished with drag and drop interaction using the mouse cursor or a
previously selected tool.

• Adjust graph layout (always stepped): This task is performed when users want to
apply a certain layout algorithm to a graph presented in a node-link diagram view.
In the majority of systems, this can be achieved by selecting a layout algorithm
from a list and pressing a button afterwards.

Encode Tasks: The users intention when performing encode tasks is to alter the visual
representation of the data including the visual appearance of each data item. Changing
the color-mapping of graph edges in a matrix representation is one example.

• Change node size (mostly stepped): This task is accomplished when users want
to alter the default range of node sizes. This task is supported with interactive
sliders for example.

• Change label size (mostly stepped): A common way to present node or edge iden-
tifiers is to use labels. Changing the label size can be necessary when they occlude
each other, overlap nodes or edges, or when they are too small to read. This task
is supported with drop-down menus where users can select predefined label sizes
for example.

• Change node/edge mapping (mostly stepped): When changing the node or edge
mapping, users aim to alter the visual representation of node/edge attributes, for
example new attributes can be communicated that have not been visualized before.
This can be commonly achieved through GUI dialogues.

• Color node/edge independently from mapping (always stepped): This task is per-
formed when users want to mark a node/edge in the visualization with a color
different to the mapped color, e.g., to communicate a certain characteristic. Sys-
tems typically support this task with coloring-tools.

Abstract & Elaborate Tasks: By performing these tasks, users adjust the level of
abstraction of a data representation. For example by expanding nodes of a clustered
graph in order to see more details.
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• Expand/Collapse node (always stepped): To expand a node means to drill down
the view of the graph on a selected node of a clustered graph in order to view the
associated subgraph. Collapsing a node is the reverse operation. These tasks are
usually supported by selecting options in context menus.

Filter Tasks: When filtering data, the users intention is to change the set of displayed
data items based on specific conditions. Filtering is usually applied to nodes or edges
when working with graphs.

• Apply node/edge filter (varying between all three): Change the set of displayed
nodes or edges depending on specific conditions. Some systems provide dialogues
where users are able to set filter conditions and provide sliders to apply the filters
interactively.

Connect Tasks: With connect tasks users highlight associations and relationships be-
tween data items that are already presented and show hidden information relevant to a
specified item.

• Show/hide labels (always stepped): This task is performed when users want to
show or hide labels in the visualization (e.g., node labels). This task is supported
with a simple toggle button for example.

• Show node/edge attributes (always stepped): Sometimes users need to view at-
tribute data associated with a specific node or edge in a tabular form. These
information are usually displayed in a separate view after selecting node or edge
of interest.

• Show metrics/statistics (always stepped): With this task users want to view met-
rics or statistics concerning the whole data set or a previously selected subset.
Usually such information are provided in individual panels or views.

To conclude, all categories from Yi et al. [27] are supported by graph visualization
systems. Surprisingly, the selection of edges is not widely supported. Concerning the
interaction mode it becomes clear that mostly stepped interaction followed by composite
interaction is used. The continuous interaction mode is used rarely. This is typical for
systems developed for desktop environments. Figure 3 shows interaction techniques for
zooming and expanding a node exemplarily.

Basic Tasks for Graph Editing

Create Tasks: By performing these tasks, users create empty documents for new data
sets.

• Create empty document (always stepped): A task to create a file for a new data
set. This task is usually supported with a GUI dialogue.
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(a) Interactive Zooming (b) Expanding a node

Figure 3: Two interaction techniques for graph exploration tasks in CGV: (a) interactive
zooming using the mouse cursor and wheel to specify the zoom center and zoom
level, respectively (zoomed region marked with red rectangle), (b) Expanding
a node (marked with red rectangle) of a clustered graph using a double mouse
click.

Insert Tasks: When insert tasks are accomplished, new data items are added to the
data set. Concerning graphs, inserting nodes and edges are examples.

• Insert node/edge (mostly composite): The task to insert a new node/edge. This
task can often be accomplished by dragging a template shape from a shape palette
to the visualization.

• Insert copied node/edge/subgraph (always stepped): With this task a previously
copied node/edge/subgraph shall be inserted. This is usually supported by right-
clicking the visualization and selecting an option from a context menu.

• Duplicate node/edge/subgraph (always stepped): With this task a node/edge/subgraph
is copied and inserted again at once. After selecting the node/edge/subgraph, this
can be accomplished by selecting an option from a menu for example.

• Add node/edge attribute/label (always stepped): The task to add a node/edge
attribute or label is also often supported with the use of GUI dialogues that can
be invoked through a node specific context menu.

• Add group to selected nodes/edge (always stepped): A task to group selected
nodes/edges, for instance, to express a semantic relationship. One common inter-
action technique is to first select the nodes/edges and apply the grouping through
a selection in a context menu afterwards.

Delete Tasks: Delete tasks are performed in order to remove existing data items from
the data set. Deleting individual nodes, edges or subgraphs are examples concerning
graphs.

• Delete node(s)/edge(s)/subgraph (always stepped): With this task the user’s in-
tent is to remove selected objects from the data set. This can usually be done
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(a) Inserting an edge (b) Deleting multiple nodes

Figure 4: Two interaction techniques for graph editing tasks in yEd: (a) Inserting an
edge of an edge template palette with mouse drag and drop interaction, (b)
deleting a set of nodes with the keyboard input del after selection with a
rectangle frame. Individual steps of each interaction technique are illustrated
from left to right.

by selecting these objects first and pressing the delete button on the keyboard
afterwards.

• Remove group (always stepped): A task to remove a previously added group. This
can usually be performed with right-clicking the group and selecting the dedicated
option of a context menu.

Update Tasks: By performing update tasks, users change characteristics of data items,
for instance an attribute value of a graph node.

• Update node/edge attribute value (always stepped): A task for changing the value
of a specific node or edge attribute. This can usually be performed with right-
clicking the node/edge, selecting the dedicated options of a context menu and
entering a new value with the keyboard.

• Update node/edge label (always stepped): This task is performed similar to the
task above, but for node or edge labels.

Explore Tasks: Exploration tasks in this context are performed to navigate to different
subsets of the data in order to edit them.

• Pan view (always continuous): This task is performed similar to the task in graph
exploration.

• Zoom view (mostly stepped): This task is performed similar to the task in graph
exploration.

Select Tasks: By performing selection tasks in this context, users mark data items of
interest to edit them, e.g., nodes, edges, subgraphs, associated data attributes or sets of
these.
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• Select node (mostly stepped) / Deselect node (always stepped): These tasks are
performed similar to the task in graph exploration.

• Select edge (mostly stepped) / Deselect edge (always stepped): These tasks are
performed similar to select node task but for edges.

• Select multiple nodes (varying between all three) / Deselect multiple node (always
stepped): These tasks are performed similar to the task in graph exploration.

• Select multiple edges (varying between all three) / Deselect multiple edges (always
stepped): These tasks are performed similar to select multiple nodes task but for
multiple edges.

Miscellaneous Tasks: Additional Tasks that do not fit in above categories.

• Copy node(s)/edge(s)/subgraph(s) (always stepped): A task to copy an object or
a set of objects in order to insert them afterwards to the same or another data set.
This can usually be achieved by selecting the objects first followed by the keyboard
shortcut ctrl + c or a selection of a context menu option.

• Cut node(s)/subgraph(s) (always stepped): A task to copy and remove objects at
once. This is also mostly achieved with the use of context menus.

• Change edge path (always composite): With this task users want to change the
path of an edge. This is usually achieved by selecting an edge and dragging edge
control points.

We identified basic tasks for graph editing in six categories. Noteworthy, the categories
explore and select also belong to editing because pan, zoom and select/deselect tasks are
widely supported in graph editors as well. The reason for that is graph editors use node-
link diagrams to display subsets of the graph and users need to navigate to different parts
of the graph in order to view but also to edit them. Furthermore, users need to specify
the objects to be affected by editing operations. The most common way to achieve
this is with selection techniques. In contrast to systems for visual graph exploration, the
selection of edges is widely supported in systems for graph editing. Another difference is,
that temporary selections are usually not supported. Concerning the interaction modes,
we can identify a similar trend to the basic interaction tasks in visualization systems
for graph exploration. Stepped interaction is used for the majority of tasks. Only very
few systems utilize continuous or composite interaction modes. Because all the analyzed
graph editors are desktop systems, this result is expected. Figure 4 illustrates interaction
techniques for the insert edge and delete nodes tasks examplarily.

After identifying basic tasks for a system supporting graph exploration and editing,
the next step is to determine what interactions can be used in order to accomplish these
tasks. This is discussed in the following section.

11



4 Interaction Vocabulary

There is a wide variety of research in examining the possibilities to influence computer
systems using modern human-computer interactions. These are mainly based on the
concept of reality-based interaction [15], where the user’s skills and capabilities of un-
derstanding basic physics, their body, their environment, and the social context are in
focus. In the following, we discuss different aspects and dimensions relevant to generate
an extensive interaction vocabulary capable of distinguishing enough gestures to map
onto the tasks presented in the previous section.

Interaction Modality

Various interaction modalities have been explored in research, e.g., pen interaction, touch
and multi-touch, tangible interaction (actuated or passive tangibles), tangible views and
spatial interaction, mid-air gestures, speech interaction, gaze-based interaction, brain-
computer interfaces, multi-device interaction, proxemic interaction, and 3D interactions.
While most of these can be used in context of interactive surfaces, we focus on the ones
in actual contact to the surface: pen, touch and tangible interaction (see Figure 5).
However, it is of course possible to combine these contact-based interaction modalities
with other contactless modalities, e.g., speech and touch [25], or with each other, e.g.,
touch through tangibles [7], to improve interaction, its meaning and enrich the individual
vocabulary. Additionally, individual modalities can specifically support a certain mental
model of the user. In a user-elicited study conducted by Frisch et al. [11], users specifi-
cally distinguished modalities for certain tasks, e.g., creation and editing tasks with pen,
while manipulating elements through touch, while for other tasks pen and touch were
used interchangeably, e.g., selecting a node.

Single- / Multi-Device and Single- / Multi-User Gestures

Within a single modality or through combining modalities, gestures in the vocabulary
can be executed with different devices, i.e., different fingers, hands, pens, or tangibles,
and can thereby change the meaning of the gesture as long as they can be distinguished
by the sensor system. A tap, i.e., a short contact with the surface by a device, can be
interpreted differently when made by a touch or pen, but also when performed with
different devices within one modality, e.g., index finger or ring finger. Additionally, a
concrete gesture can be made out of individual base gestures of single or multiple devices.
We could, for example, construct a gesture that is defined by a tap from a finger of one
hand in conjunction with a tap from a finger from the other hand. Taking this principle
further, gestures can be specifically set out to be performed by a single specific user
or multiple users in conjunction if user recognition and distinction is supported. This
may seem to make interaction unnecessarily complicated but can be useful for security
measures or for global changes to a system in scenarios where users work in parallel and
might otherwise disrupt another person’s workflow.
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Figure 5: Contact-based interaction modalities for interactive surfaces: a) Touch Inter-
action, b) Pen Interaction, and c) Tangible Interaction.

Concrete Gesture and Motion

The individual gesture is very dependent on the selected interaction modality. General
parameters to consider for distinguishing different gestures and the user’s intentions are
the presence of an object or user, the duration of its existence, position, motion, pressure,
size, orientation, and sequence [20]. For continuous gestures motion can further be
defined by the velocity of (parts of the) motion, the direction of movement, the path of
movement or changes in direction during the motion. This section presents an overview
of these parameters for the selected modalities.

Degrees of freedom for touch and pen gestures In the following, we list a set of
dimensions to consider when designing touch gestures. These are adapted from the
research of Wobbrock et al. [26] who analyzed user-elicited gestures. We present these
dimensions for touch and pen simultaneously since both present a single, direct pointer
interaction.

• Continuity/Flow: discrete↔ continuous,
e.g., a short contact with the surface (tap) vs. a longer continuous movement on
the surface (drag)

• Duration/Velocity: short↔ long duration,
e.g., a short contact (tap) vs. a long contact with the surface (hold) or alternatively,
a short movement in one direction (flick) vs. a longer movement on the surface
(drag)

• Nature of motion: symbolic, physical↔ metaphorical, abstract,
e.g., dragging along a path vs. drawing a letter

• Linearity of movement: straight↔ changes in direction,
e.g., one fluent movement vs. crossing something out multiple times (see Figure 5b)

• Combination of base gestures
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– Number of touch points: single touch↔ multi touch,
e.g., one finger drag vs two finger drag

– Number of hands: uni−manual↔ bi−manual,
e.g., drag with one finger vs hold with one hand and drag with the other

– Relation of movement: parallel↔ divergent movement,
e.g. two-finger drag vs. two finger moving away from each other (pinch)

Degrees of freedom for tangible gestures Similar to touch and pen, the presence of
tangibles can convey a meaning and thereby trigger a reaction of the system. However,
this is especially the case, as tangibles can stay in place for a longer time while new
gestures are performed. More than for touch, tangible interaction distinguishes the type
of device or actuator that was used to perform a gesture as different tangibles are often
associated with different functions. Factors of these gestures are therefore not limited
to motion with the tangible, but properties of the tangible itself. The dimensions to
consider when creating a tangible vocabulary are:

• Form, size and flexibility: thin, bendable↔ thick, rigid,
e.g., foils, plates, tokens, blocks and compound forms [7]

• Materials: color, haptics, and transparency,
e.g., tangibles made of wood, plastic, or acrylic glass

• Role and function, e.g., function↔ parameter ↔ data,
e.g., tangibles can be used for invoking functions, as physical controls changing
parameters, or as representatives or data containers [7]

• Interaction with a single tangible

– Lifting or placing the tangible

– Translation along the surface plane with different movements (see also the
dimensions of motion for touch)

– Rotation and orientation

– Tilting

– Flipping

– Shaking

• Combination of base gestures

– Type of tangible: same type↔ different type tangibles,
e.g., the small wooden tangible has a different meaning than the large wooded
block

– Relation of tangibles, decoupled↔ coupled tangibles,
e.g., next to each other or overlapped and stacked (see Figure 5c)

14



Figure 6: A gesture’s meaning can be dependent on the relation to an object. Objects
can be classified as part of the gesture when it a) started on it, b) crossed it,
c) ended on it, and/or d) enclosed it.

These parameters describe the individual gestures in a vocabulary which can again be
extended by combining different modalities to form a gesture. It is therefore unreasonable
to list all possible gestures. However, it is essential to be aware of these parameters and
resulting possibilities when designing a gesture set for specific tasks.

Object relations

Gestures can be performed with respect to objects, to world features, or independent
from the visualization [26]. While some of these features are of little to no importance for
the intention the gesture conveys, often gestures are executed specifically in relation to
an object. Furthermore, not only fixed object but also different areas of the surface can
be interpreted as objects with specific meaning, e.g., the area along the border of a view.
In terms of tangible interaction, a gesture can be performed in relation to a previously
placed tangible. Then the tangible itself can function as a representative of an object.
Objects or areas that are part of the gestures can be categorized (see Figure 6) as

• the object or area the gesture started on,

• the object or area the gesture crossed,

• the object or area the gesture ended on, and

• the object or area that was enclosed by the gesture.

In summary, user actions have several degrees of freedom to be distinguishable from
each other. Interaction modality, device(s), concrete gesture and affected virtual object
are only few examples as not all of them can be presented here. Having n degrees of
freedom D1, D2, .., Dn, the interaction vocabulary can be described as a set of n-tuples
I = {i1, i2, ..., il}, where ij = (dj1 , dj2 , .., djn), djk ∈ Dp, 1 ≤ j ≤ l, 1 ≤ p ≤ n.

So far we identified basic tasks for graph exploration and editing, discussed different
aspects and dimensions to generate an interaction vocabulary and formally described it.
In order make users able to accomplish basic tasks interactively, a mapping from tasks
to interactions has to be established. This is discussed next.
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5 Mapping Tasks to Interactions

After describing a set of basic interaction tasks T = {t1, t2, ..., tk} for graph exploration
and editing, as well as an interaction vocabulary I = {i1, i2, ..., il}, the next step is to
decide which interaction shall be used to accomplish which task. Hence, a mapping
from tasks to interactions is needed. Before providing a formal mapping approach, we
describe pragmatic mapping examples for a small set of tasks.

Mapping Examples

The following mapping examples use a small subset of basic interaction tasks from sec-
tion 3 and gestures generated from the parameters listed in section 4. We picked two
exemplary mappings for each of the selected contact-based modalities: touch, pen, and
tangible interaction. For use of touch and pen interaction in conjunction for graph
creation and editing we refer to Frisch et al. [11].

Interaction Modality - Touch

In this example for a touch-based vocabulary mapped on basic graph interaction tasks,
we present two gestures where one is specifically referencing a data object while the
other is a global gesture influencing the whole view. Because these basic tasks are either
selective (focusing on a single node) or global (focusing on the view), the gestures are
designed to either use single touch for the precise interaction and multi-touch for the
interaction that has more extensive impact on the visualization.

Select - Select Node → Tap node:
A single user shortly touches the surfaces in the location of the node, i.e., start and end
object equal the node to select.

Explore - Center View → Shake canvas:
The user places multiple fingers on the surface, independent from any objects, then
makes a back and forth movement in a way that all actuators frequently change their
direction of movement in a short period of time.

Interaction Modality - Pen

For the mapping with pen interaction, we selected an example showing the differences
of memorized to symbolic, metaphorical gestures. While it would be possible to let the
user draw a specific letter to indicate a commando, the drawing of symbolic features
that indicate the resulting view is easier to recall from memory.

Reconfigure - Apply graph layout → Draw the result:
In the right hand corner of the view, the user uses the pen to draw a simplified sketch
of the intended layout, e.g., a ring for a circular layout or three nodes forming a tree for
a tree layout.

Connect - Hide labels → Cross out node and edge label:
This gesture is composed from hiding the node and edge labels individually. For each,
nodes and edges, one representative label is used where the user drags the pen in multiple
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consecutive motions with multiple changes in opposite directions of movement crossing
the representative label (see Figure 7a). By crossing out these labels, all labels will be
hidden from view.

Figure 7: Exemplary mappings of tasks and gestures: a) Hiding label through crossing
out a representative, b) to c) using tangibles to duplicate nodes similar to
stamping.

Interaction Modality - Tangible

For the set of gestures forming the tangible interaction vocabulary, it is very convenient
to assign specific categories to tangibles and thereby convey different purposes for each
device. For this context, we assume an office setup where these tangibles can be stored.
In other cases, such as mobile applications, tangibles are rather inconvenient or have to
be limited in their amount. However, in any case the different devices have to be clearly
distinguishable not only for the system, but the user. In our case, we assume a set of
visibly different tangibles that are both small opaque tokens as well as larger transparent
plates that can be placed on top of elements without occluding them.

Insert - Duplicate node → Stamp nodes
One small transparent tangible for selection is placed on the node to be copied. Another
tangible of this type is placed on top and then lifted up and placed on a free space in
the canvas (see Figure 7b-c). The second tangible functions as a stamp: A copy of the
node appears in the location on which it is placed.

Delete - Delete subgraph → Select, then flip
The user places a tangible for editing on the surface and selects the subgraph to be
removed by moving the tangible, crossing the elements and connecting them to the tan-
gible. When lifting up the tangible and flipping it, the elements are removed.

These examples indicate that finding a suitable mapping even for a small set of tasks is
not trivial. The reason for that is the immense range of possibilities to consider. Having
a larger set of tasks, finding a ”good” mapping is even more difficult. In such cases we
recommend to use a formal approach. In the following, a formal approach for finding
and evaluating a mapping is provided.
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Formal Mapping Approach

Mathematically, a mapping m from tasks to interactions can be defined as m : T → I. To
avoid ambiguities, m must be injective. In order to set up a usable interaction alphabet,
m has to satisfy a set of certain criteria C = {c1, c2, ..., cn} often referred to as interaction
guidelines or design rules [6, 9, 13, 17]. Let M be the set of possible mappings F → I.
The quality of a mapping m ∈ M concerning a specific criteria c ∈ C can be expressed
with a quality function q : M × C → R. Hence, the overall quality of a mapping m
concerning C can be expressed with the sum

∑n
i=1 q(m, ci). Considering varying criteria

priorities in different application contexts, it makes sense to add weight factors to every
summand so that the overall quality is expressed by

∑n
i=1 αi · q(m, ci), with αi ∈ [0, 1].

Finding a ”good” or ”the best” mapping can now be interpreted as an optimization
problem where the overall quality is maximized.

When applying this matching approach to a given set of tasks and interactions, a set
of concrete matching criteria C needs to be selected. Common criteria in literature are:

• Predictability: Interaction should always exhibit deterministic behavior for the
user [17].

• Consistency: Similar interactions should be used for similar functions [17].

• Familiarity: Interaction should map as closely as possible to the real world or to
known metaphors [17].

• Generalizability: Interactions should be as specific to the context as necessary, but
as basic as possible to be reusable in other contexts [17].

• Viscosity: Frequently used functions should map to interactions with lowest effort
[6, 13].

• Recoverability: Users should easily undo interactions [9].

• Directness: Interaction should rather be directly applied to the affected virtual
object than on separate control panels [22].

• Continuity: Combination of basic interaction steps should be possible to form an
interaction flow without discontinuities [10, 17].

Moreover, the quality function q has to be defined according to the semantics of the
selected criteria. An optimization algorithm can now be used to converge to a mapping
with an optimal overall quality.

Even with this formal approach, setting up a mapping for the whole set of tasks
described in section 3 and the interaction modalities described in section 4 still takes a
considerable amount of time and effort. Finding such a mapping is beyond the scope of
this report and left for future work.
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6 Conclusion and Future Work

In this technical report, we aim to support the development of a system for graph
exploration and editing specifically designed for todays interactive surfaces. With an
extensive review of existing systems for either graph exploration or graph editing, we
were able to define a list of basic interaction tasks that should be supported by a system
for both graph exploration and graph editing. In order to accomplish these tasks through
user interactions, a mapping from tasks to interactions is necessary. For this reason, we
analyzed different interaction modalities according to their interaction vocabulary first
and described additional degrees of freedom for interaction. Since mapping tasks to
interactions is difficult because of the immense range of possibilities and criteria to
consider, we developed a general mapping approach. By implementing this approach
it becomes possible to set up a mapping with a good quality concerning these criteria.
With this work, we support future research in developing such a mapping. Our entire
approach is not limited to graph exploration and editing but generally applicable.
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