
A Conceptual Model and Specification Language for Mixed Real ity
Interface Components

Pablo Figueroa∗

Universidad de los Andes.
Colombia

Raimund Dachselt†
Dresden University of Technology.

Germany

Irma Lindt‡
Fraunhofer FIT, St. Augustin.

Germany

ABSTRACT

This paper presents a uniform approach for specifying mixedreal-
ity user interfaces, including 3D interaction techniques and 3D wid-
gets. Our main goal is to facilitate the process of reusing previous
work, so more complex applications can be built and documented
in a formal and uniform way. Our work builds on previous expe-
riences and taxonomies in related fields. Our specification method
is described at two levels: a conceptual model and a specification
language. The conceptual model provides means to generalize user
interface components and to port them to different hardwareset-
tings and application contexts. An XML-based specificationlan-
guage implements the conceptual model and allows for automatic
processing and tool support. Several examples show main features
of the proposed representation and demonstrate the applicability of
both model and language to different mixed reality user interfaces,
including Desktop VR, Immersive VR, and Augmented Reality.

CR Categories: I.3.6 [Computer Graphics]: Methodol-
ogy and Techniques—Languages D.2.1 [Software Engineering]:
Requirements/Specifications—Languages;

Keywords: 3D User Interfaces, 3D Interaction Techniques, Mixed
Reality, VR, AR, Desktop VR, 3D Widgets, Interface Description
Language

1 INTRODUCTION

The interface of 3D applications is still a field with many uncer-
tainties for designers and users. Despite of more than a decade of
research in the field, designers still lack standard tools, methodolo-
gies, or guidelines to pursue their work. 3D user interfaces(3DUIs)
are often developed from scratch, although useful solutions already
exist. This is partially due to the limited capabilities that implemen-
tation environments offer to their users, but it is also due to the lack
of standards for 3DUIs, which results in a wide variety of noncom-
parable results in the field. End users also suffer from this situation.
Since 3D applications are rather application and hardware-specific,
it is difficult to anticipate how to interact with a 3D application.
This impacts the usability of a 3D application and affects users’
learning curves.

Results in the field are promising and diverse, but there are still
big difficulties in the creation of complex, portable mixed reality
(MR) [22] applications. It is usually difficult to reuse previous solu-
tions for new developments. 3DUIs are generally described in plain
text, mostly source code, which leads to an incomplete description
of the interaction techniques involved, the intended method of use,
and the context in which the interfaces were tested. The lackof
a standard description language makes difficult the processes of

∗e-mail:pfiguero@uniandes.edu.co
†e-mail:dachselt@inf.tu-dresden.de
‡e-mail: irma.lindt@fit.fraunhofer.de

analyzing, comparing, and reusing techniques. It is also difficult
to abstract ideas from previous experiences and use them in new
applications, which may be running in totally different hardware
setups. Finally, the lack of a common description language also
precludes the creation of supporting tools, guidelines, and method-
ologies, which are important in the professional work of 3D appli-
cation designers.

This work attempts to provide a unifying method for the descrip-
tion of 3DUIs. Our goals with this work are the following:

• Increase the accessibility of 3DUI concepts. We would like
to build a repository of 3DUI descriptions that can be used to
categorize, compare, and to find 3DUI components in order to
design new mixed reality applications.

• Lay the foundations for further developments in the field of
3DUIs. A unified description of generic 3DUI components
might encourage the development of new and more complex
components through combination or adaptation of existing
ones.

• Push the development of 3DUI guidelines and tools. Guide-
lines and tools can be developed based on a unified descrip-
tion, e.g. to ease the selection of appropriate 3DUI compo-
nents or to combine and adjust them.

• Push the standardization of 3DUI concepts and their descrip-
tions. We are aiming at a standardized description of 3DUIs
that can be referenced from different frameworks and that
might serve as a general specification and exchange format.

The following sections are organized as follows: Section 2 dis-
cusses previous and related work in the field of 3D user interface
components and description languages. Section 3 presents our
model for the formal specification of 3DUI components along with
several examples. Section 4 introduces the XML-based specifica-
tion language ICDL, again providing an example. Section 5 con-
cludes this paper and points out future directions.

2 RELATED WORK

As the basis for our work we have analyzed previous research on
3DUI with the focus on classifying and describing components of
mixed reality interfaces. In the field of VR numerous 3D interac-
tion techniques have been developed by various researchersduring
the past decade. The survey by Hand [14] examines some tech-
niques for object manipulation, navigation, and application control.
A more recent overview is given in the book on 3D user interfaces
by Bowman et al. [5], where techniques are classified in termsof
task decomposition using the following categories: selection, ma-
nipulation, travel, wayfinding, system control, and symbolic input.
Other classification approaches exist such as the subdivision in ego-
centric and exocentric manipulation techniques by Poupyrev et al.
[23]. However, they do not include specification approachesfor
specific techniques. Figueroa et al. presented InTml [11], an XML-
based specification of interaction techniques that was usedto create

IEEE VR 2006 Workshop “Specification of Mixed Reality User Interfaces”

4

a set of reusable components and influenced this work. Withinthe
Open Tracker project [27] an object-oriented architectureis used,
which also employs an XML-based approach to achieve a ’write
once, input anywhere’ VR application development.

3D interaction in the field of Desktop VR is usually done with
the help of 3D widgets, since they allow the subdivision of higher-
dimensional interaction tasks into sub tasks being suitable for
lower-dimensional input devices. However, most of the manyex-
isting 3D widget solutions were developed within the context of
immersive VR systems. In 1997 Leiner et al. presented a first
overview on existing 3D widgets, roughly classifying them into ge-
ometric manipulation and application control [18]. Dachselt and
Hinz presented in [9] a unifying widget classification according
to the criteria interaction purpose / intention of use. Theyiden-
tified the following main categories: direct 3D object interaction,
3D scene manipulation, exploration and visualization, andsys-
tem/application control. This classification can be found online [37]
and contains more than 70 basic widget types from the literature.
For the specification of those widgets an XML-based languagewas
also proposed within the Contigra research project [10, 37]. Al-
though it is mainly suitable for Desktop VR, tailored to Web3D
applications and not sufficiently general, it influenced thelanguage
proposed here.

Various interaction techniques were also developed in the field of
Augmented Reality (AR) in the past few years. The work of Azuma
et al. presents a number of advanced solutions [3]. To our knowl-
edge there exist no detailed taxonomies nor generalized specifica-
tion languages for AR, partly because of the novelty of this research
area. However, some of the objectives pursued by MR authoring
systems such as DART [21] and APRIL [17] are similar to those
presented here. DART extends a 2D authoring system with plug-
ins and scripts to allow for the creation of AR applications;APRIL
describes AR presentations based on state charts. Typically, these
systems offer a set of best practice interaction techniquesand 3D
widgets targeting only a specific application domain.

It can be summarized that individual interface techniques and
3D widgets were developed in all fields, whereas classification ap-
proaches and especially generalized specification languages only
rarely exist. Moreover, there is no unifying model or descriptive
language available for the whole mixed reality continuum bynow.

In addition to that it can be observed that XML-based user in-
terface description languages [34] are gaining attention in the field
of GUIs, especially for mobile devices. The advantages of using
XML-based languages for flexible and parameterized interface de-
scriptions have become obvious with languages such as the User
Interface Markup Language (UIML) [2]. One of its extensions,
CUIML [28] uses XSL transformations to convert a CUIML-based
user interface description to markup languages that can be dis-
played on various I/O devices, including markup languages such
as VRML97 and HTML.

3 A CONCEPTUAL M ODEL FOR 3D INTERFACE COMPO -
NENTS

This section presents our model for the formal specificationof in-
terface components. 3DUIs are described as a set of typed compo-
nents. Some operations defined over the type system might allow us
to generalize and port components to different hardware platforms,
so we can reuse definitions at an abstract level. For the design of the
conceptual model we studied the design space of 3D interfacecom-
ponents by comparing existing 3DUIs and their properties. Based
on the design space, we have identified several dimensions ofinter-
est for the formal specification of interface components including
the following:

• The required interaction devices. Interface components pro-
cess input data received from input devices and produce some

output sent to output devices. Devices required by an inter-
face component might be rather exchangeable or there might
be a strong dependency on specific device types.

• The involved modalities. The input and output data of an in-
teraction component might support different sensory percep-
tions.

• The application type addressed in the mixed reality contin-
uum. Certain interaction components only make sense in the
context of an AR, VR, or Desktop VR application, such as
the GoGo arm extension technique [24] in an immersive VR
setting.

• The relationships with other components. Some interface
components can, should, or need to be combined with other
interface components.

• The behavior of the component. Interface components im-
plement different behaviors, meaning that they are producing
different outputs for the same input values.

• The target group. Interface components might be rather uni-
versally applicable or they might be designed to meet the
needs of specific user groups e.g. by employing metaphors
or interaction devices that are well-known to this group.

• The user task supported. Typically, interface components sup-
port one or several tasks, such as navigation or selection.

• The required user skills. Interface components require a user
to perform certain actions ranging from simple button clicks
to actions that are physically challenging.

In this first attempt for a conceptual model, we concentrate on
the first six aspects: devices, modalities, application types, rela-
tionships, target groups, and behaviors. Further work needs to be
done in order to specify user tasks and required user skills.

The following subsections present some definitions, the formal
language, the treatment of devices and events, and some examples
of use.

3.1 Definitions

A 3D Interaction Component (3DIC) is an identifiable elementin
the user interface of a mixed reality application employing3D con-
tent. We want to use this term in order to unify and include others
currently used in the literature, such as 3D interaction technique,
3D widget [8], or 3D gadget [29]. Such modular elements are cur-
rently implemented as manipulators [32], PROTOs [7], behaviors
[33], or callback functions [30, 16], depending on the implementa-
tion technology used.

The description of any 3DIC includes the following elements,
explained in more detail later in the paper: a name, the devices in-
volved in its execution, the abstract events that could be extracted
from the devices, a state machine, a set of parameters, the context in
which it has been run, and a description of its execution. Notall ele-
ments may be required in particular cases, and current descriptions
usually cover a subset of the ideal description for any 3DIC.The
following subsection shows a notation for this concept, andSection
4.2 shows the implementation as an XML schema.

A particular 3D widget, gadget, or interaction technique could
be represented by one or several 3DICs, depending on the level of
abstraction of the description. We propose the following lifecycle
for 3DICs:

IEEE VR 2006 Workshop “Specification of Mixed Reality User Interfaces”

5

1. First, a 3DIC is used to describe an interaction techniqueor
widget as it is shown in its origin, which may be a paper, a
book, an application, or an API. We call this first stage Spe-
cific 3DIC (S-3DIC). The input and output of a S-3DIC is
usually dependent of specific devices, and its execution may
be described directly in terms of input and output events from
its devices, which precludes its generality.

2. A generalization work can be done on the S-3DIC description,
so input and output events are identified without references
to particular devices, mapping from devices to events are de-
scribed, and execution description is based in events, without
references to devices. Further work can be done so this new
description is decomposed intobasic components. We call
these basic 3DICs Generic 3DICs (G-3DICs), and they repre-
sent the abstract and reusable representation of any widgetor
interaction technique described.

The set of G-3DICs represents the reusable and platform inde-
pendent set of 3DICs, which may be the most important contri-
bution of an unifying representation framework such as thisone.
Initially, we are assuming that the transition from S-3DICsto G-
3DICs is made by experts in the field, which certify its quality. We
envision supporting tools that will guide future developers in the
process of identifying suitable G-3DICs from their S-3DICs.

3.2 Formal Description

Any 3DIC has a name, and refers to a tuple of the form
{St,Par, InpDev,OutDev, InpEv,OutEv,DevMap,Exec,Cont}.
Each element in the tuple is a set of a certain type, which may
have elements, be empty, or be unknown, if there is not enough
information.

St stands forStates, a state machine that describes the behavior
of a 3DIC. We use the state machine definition in UML [4], al-
though our examples here show only the state names, for spaceand
simplicity reasons.

Par stands forParameters, a set of values used for initial setup.
Each element inPar has the form{id,type}, where type is a defined
type in the parameter space.

InpDev and OutDevare the sets of input and output devices.
Each device is described as the tuple{Par, InpEv,OutEv}, which
are the device’s setup parameters, input events, and outputevents,
respectively.

InpEv and OutEv are the input and output events of a 3DIC.
InpEv can be defined implicity as the union of allInpEv in the
3DIC’s input devices, and accordingly forOutEv. In the case of
G-3DIC, which do not have devices,Par, InpEv, andOutEvare
defined explicitly and they represent the interface of such acom-
ponent. InpEv andOutEvare represented also as tuples with the
same type as parameters, and they define the space of events ofa
component.

DevMapstands forDeviceMapping, which are functions that re-
late 3DIC input and output events to device input and output events.
In other words, they define how a 3DIC input event is related toout-
put events from the 3DIC input devices, and accordingly to 3DIC
output events.

Execdescribes the execution as an algorithm in pseudocode. We
decided to use a pseudocode that closely follows the syntax of EC-
MAScript [15], and in particular the bindings that this language has
in X3D [35], due to the availability of its specification and its close-
ness to our purpose.

Cont stands forContext, and describes the required elements for
the full specification of a 3DIC, on top of the previously mentioned.
It is composed of the types that define the space for parameters,
devices, and events, as well as additional types and objectsused in
the description of the 3DIC’s execution. Since it is alreadyincluded

in other parts of the description, we do not explicitly extract its
representation, but it is important to be aware of its existence.

3.3 Devices, Events, and Parameters

The definition of a 3DIC is based on types for several items, in
particular for devices, events, and parameters. Seminal work in
the field of HCI [13, 6] present theories of how we can categorize
input information. In this previous work devices are presented as a
collection of sensors, each one from a small set of possible types.
Less work has been done in the standardization of types for events
and parameters of 3DICs, but it is our belief that any list will always
be incomplete, since it is always possible to use any data structure
as a parameter or event type. Nevertheless we believe a basicset
of types is required, in order to unify descriptions. We decided to
re–use the set of basic types in X3D [36] (excluding SFNode and
MFNode), since it is a well known reference.

Device types are constructed on top of simple types. We decided
to define a simple set of devices instead of just leaving inputevent
types, since we consider such types a more concrete idea for fu-
ture 3DIC designers. Again, this simple set should be enhanced
with more device definitions. Our current set of generic devices
is shown in Figure 1, in a notation similar to UML classes. Al-
though the actual mapping from this abstract definition to a specific
device is unknown, we believe the actual implementation could be
straightforward.

finger2: MFFloat

keys: MFBool

Keyboard

pos2D1: SFVec2f
pos2D2: SFVec2f
buttons: MFBool

Gamepad

Wand

j: Joystick
t: Tracker

Tracker

pos: SFVec3f
orient: SFRotation

pos2D: SFVec2f
buttons: MFBool

pos2D: SFVec2f
throttle: SFFloat
buttons: MFBool

Joystick

Mouse

finger1: MFFloat

finger3: MFFloat
finger4: MFFloat
finger5: MFFloat

Glove

Figure 1: Basic Device Types

3.4 Examples

Here we show several examples of use of this description language,
each one showing different types of applications in the mixed real-
ity continuum, featuring component abstraction and subdivision, in
VR, Desktop VR, and AR scenarios.

3.4.1 Generic Component from a Specific One

We show here our description of the GoGo Technique [24], a tech-
nique for lengthen the user’s hand in the virtual world. Fromthe
description in the paper, we extracted the S-3DIC shown in List-
ing 1. You can notice the use of trackers for input, and the useof
formulas from the paper.

IEEE VR 2006 Workshop “Specification of Mixed Reality User Interfaces”

6

Go-Go [24] :
St{ LINEAR MOV NON LINEAR MOV }
Par{ kSFFloatDSFFloatdhtSFVec3fvirtualHandObject3D}
InpDev{ headTrackerhandTracker}
Exec{

initialize() {
headReceived = false;
handReceived = false;

}
head.pos(value, timestamp) {
headPos = value;
headReceived = true;
computeOutput();

}
hand.pos(value, timestamp) {
handPos = value;
handReceived = true;
computeOutput();

}
function computeOutput() {
if(headReceived && handReceived)
{

chestPos = headPos - dht;
handInPolar = cartesian2Polar(handPos - chestPos);
if(Rr.length() < D)

Rv = Rr;
else

Rv = Rr + k*(Rr-D)*(Rr-D);
virtualHand.pos = polar2Cartesian(Rv, rho, theta)+

chestPos;
headReceived = handReceived = false;

}
}

}

Listing 1: S-3DIC Description for Go-Go

The listing is read as follows: Go-Go is a S-3DIC defined in
[24]. It has two states, for linear and non–linear movement.As
parameters, it requires a distance for the change of movement (D),
a coefficient between 0 and 1 (k), the distance between the user’s
torso and her head (dht), and a geometrical representation of the
user’s hand (virtualHand). The technique is executed with the use
of two trackers, one for her head and one for her hand. The exe-
cution is divided in several functions. Initialize is executed once,
at the beginning of the program execution. head.pos is a function
that is called once an eventpos from the devicehead is received.
computerOutput is a user defined function.

From the S-3DIC description, we produced a G-3DIC descrip-
tion of Go-Go. The fundamental idea in this technique is the use
of a smooth linear and non-linear mapping of user input. In this
case, such a quantity is abstracted and it is left alone, since all other
elements are complimentary to the technique. Note the use ofa
generic typeAType, in order to generalize the type of information
that is processed. Listing 2 shows our generic version for Go-Go.

3.4.2 Several G-3DICs from one S-3DIC

One text–based description of a VR application is found in [31], for
NICE. NICE is an environment that allows geographically–distant
kids to interact within a virtual world. The interaction techniques
of the application are described in categories, first navigation, then
manipulation. We created two 3DICs,NICENavigationandNICE-
Manipulation. From those specific components we abstracted the
basic techniques used. For example, Figure 2 shows the set of
generic components we created fromNICENavigation. Notice that
several levels of abstraction are possible. Listing 3 showsexcerpts
for NICENavigation.

Gengogo:
St{ LINEAR MOV NON LINEAR MOV }
Par{ kSFFloatDSFFloat}
InpEv{ inputValAType }
OutEv{ resultAType }
Exec{

inputVal(val, timestamp) {
value = val;
computeOutput();

}
function computeOutput() {

if(value.length() < D))
result = value;

else
result = value + k*(distance(value)-D)*

(distance(value)-D);
}

}

Listing 2: G-3DIC Description for Go-Go

GenMoveByDirection

NICENavigation

GenWalk

GenShrinking

GenMoveAndRotateByDirection

GenJump1

GenRestrictMovementByScene

Figure 2: Generic 3DICs from NICENavigation. Lines with arrows
show how G-3DICs are abstracted

3.4.3 An Augmented Reality Technique

Our first example in the field of AR comes from an early tangible
user interface developed by Fitzmaurice et al. in the Bricksproject
[12]. The specific interface component moves and rotates a virtual
object displayed on a horizontal surface by manipulating a physical
handle (brick) on top of it. To attach the physical handle to the
virtual object the physical handle is placed directly abovethe virtual
object. To release the virtual object, the physical handle is lifted up.
Listing 4 shows the interaction component as a S-3DIC.

The second interaction component (see Listing 5) is one of sev-
eral interaction techniques realized in the Tiles project [26] by
Poupyrev et al. The proximity copying interaction component
copies 3D graphics from a menu. The copy action is activated if
a physical artefact remains in the proximity of a menu item for a
certain time frame.

Both interaction components can be used together in a user in-
terface, e.g. by using a tracker that serves as input for bothinter-
action components or by automatically attaching a copied object
to the tracker. In the latter case, the graspable object interaction
component would need to be extended with the input event new-
ContentCreated that is an output event of the proximity copying
interaction component.

IEEE VR 2006 Workshop “Specification of Mixed Reality User Interfaces”

7

NICENavigation [31] :
St{ WALKING STANDING MOVING BY WAND
JUMPING SHRINKING}
Par{ initialPosSFVec3f initialOrientSFRotationangleThresholdSFFloat
speedOfRotationSFFloatspeedOfMovementSFFloat
avatarObject3D}
OutEv{ avatarPos3DValueavatarOrient3DOrientation}
InpDev{ wandWand headTrackerTracker}
Exec{

initialize() {
avatarPos = initialPos;
avatarOrient = initialOrient;
previousPos = headTracker.pos;
previousOrient = headTracker.orient;

}
wand.buton[0] { // Jump button
inJump = true; computeOutput();

}
wand.button[1] { //shrinking
inShrinking = true; computeOutput();

}
function computeOutput() {
if(inJump) {

// Jump ten times its height and slowly float down
// Move avatar according to the parabolic movement
finishJump = jump(avatar, deltaPos, deltaOrient)
if(finishJump)

inJump = false;
}
if(inShrinking) {

// Move avatar towards the closest ’floor’ object
}
// Compute delta movement and if move can be done
...

}
}

Listing 3: S-3DIC Description for NICENavigation

GraspableObjectMovement[12] :
St{ ATTACHED OBJECT DETACHEDOBJECT}
Par{ contentSetOfObject3DdisplayRegionRegion3D}
InpEv{ trackedObjectPosSFVec3f trackedObjectOrientSFRotation}
OutEv{ virtualObjectGrabbedObject3D}
InpDev{ brickTracker}
Exec{

initialize() {
selectedObj = null;

}
trackedObjectPos(value, timeStamp) {
prevGrabbed = selectedObj;
if(displayRegion.hasInside(value)) {

selectedObj = getSelectedObject(content);
if(selectedObj != null) {

mapPos2Object(selectedObj, value);
if(prevGrabbed != selectedObj)

virtualObjectGrabbed = selectedObj;
}

}
else selectedObj = null;

}
trackedObjectOrient(value, timeStamp) {
if(selectedObj != null)

mapOrient2Object(selectedObj, value);
}

}

Listing 4: S-3DIC Description for graspable object movement

ProximityCopying [25] :
St{ DISTANCE CALCULATION COPYING }
Par{ copyDistanceSFFloat3f timeThresholdSFTimemenuMenu }
InpEv{ timeChangedTrigger }
OutEv{ newContentCreatedTrigger newObjectObject3D}
InpDev{ handleTracker}
Exec{

initialize() { previousSel = null; }
handle.pos(value, timestamp) {

selection = getSel(menu, value, copyDistance);
if(selection != previousSel) {

initTime = getCurrentTime();
previousSel = selection;

}
}
timeChanged(value, timestamp) {

if(previousSel != null)
if(getCurrentTime() - initTime > timeThreshold)
copyObject();

}
function copyObject() {

newContentCreated = true;
newObject = copy(previousSel); previousSel = null;

}
}

Listing 5: S-3DIC Description for proximity copying

3.4.4 A Desktop VR Technique

The example depicted in Listing 6 shows a formal descriptionof a
3D ring menu widget in the area of Desktop VR. The original ring
menu [19] is rotated directly using the input device. In thisDesk-
top VR example two additional button widgets are used to activate
rotation in one or the other direction with the help of a 2DOF de-
vice, usually a mouse. Also note various geometry parameters to
configure the appearance of the widget. We created another 3DIC
from the implementation at [19], and a G-3DIC from both of them,
not shown here but available online [1].

4 ICDL: A U NIFIED XML- BASED SPECIFICATION L AN-
GUAGE

In addition to the underlying conceptual model for 3DICs andtheir
formal description presented in Section 3 it is desirable tohave a
consistent specification language for 3DICs.

4.1 Requirements and Goals

Whereas the formal description already supports a unique identifi-
cation of 3DICs, an extended specification language should allow a
consistent description of 3DICs at a high level of detail to avoid am-
biguities and to realize the model presented in Section 3. Itmust be
possible to describe arbitrary 3DICs – modular components rather
than an interface as a whole – in current and future mixed real-
ity applications. That is why the language should be extensible to
permit further enhancements, additions and new meta data. An-
other goal was a reduced learning curve along with an easy and
familiar syntax, at the same time allowing for automatic processing
and tool support. Independence from existing frameworks and spe-
cific exchange formats for 3DUIs should be guaranteed, translation
to other description languages and classification approaches ought
to be feasible. To meet these requirements we decided to develop
a specification language based on XML schema. We propose the
Interface Component Description Language(ICDL), which is pre-
sented in the following subsections. It can also be found online at
[1] along with various ICDL instance documents.

IEEE VR 2006 Workshop “Specification of Mixed Reality User Interfaces”

8

RingMenu [19, 37] :
St{ OBJECTSELECTED MENUROTATING }
Par{ itemListMFObject3DfirstSelectedObject3DrotationSpeedSFFloat
itemRatioSFFloatmenuRadiusSFFloatrotationWidgetsObject3D
additionalGeometryObject3DhighlightGeometryObject3D}
InpEv{ directItemSelectionObject3DactivateRotationLeftSFBool
activateRotationRightSFBool}
OutEv{ currentItemChangedSFBool selectedItemObject3D}
InpDev{ mouse2DOF }
Exec{

initialize() {
arrangeObjectsInRing(itemList, menuRadius, itemRatio);
directItemSelection(firstSelected, 0);

}
directItemSelection(value, timestamp) {
rotateToObject(value); selectedItem = value;
currentItemChanged = true;

}
activateRotationRight(value, timestamp)
{
selectedItem = rotateRight();
currentItemChanged = true;

}
...

}

Listing 6: S-3DIC Description for a Ring Menu

4.2 Basic Structure

The Interface Component Description Language allows for the de-
scription of generic and specific 3D interface components interms
of separate root elements. For example, Figure 3 shows the basic
structure of the S-3DIC type.

An Identificationelement provides a name and ID attribute as
well as elements to uniquely identify a 3DIC. This includes sev-
eral meta data, among them author and version within theModifi-
cation element. The relation to other 3DICs, either informal or in
terms of inheritance, is expressed with the following elements Re-
lated3DICandExtensionOfreferring to other 3DIC specifications.
Some of the dimensions of the conceptual model described in 3are
expressed withSuitableDomainandTargetGroup. In order to pro-
vide means of extending the identification with user-specific meta
data or to allow future enhancement there is also a genericMeta-
Dataelement.

To identify the origin of a specific 3D interface technique one
or more references to the literature can be included in theOrigin
element as BibTeX entries. To conclude with the informal part of a
3DIC description the elementDocumentationmay contain a verbal
and some figurative illustrations of the S-3DIC as well as links to
Websites providing additional information and generic meta data.

The elementsParameters, EventsandDevicesreproduce the el-
ements of the formal description introduced in Section 3.2.All
parameters possess an ID, value and type. If possible, the type
is chosen according to the X3D types to ensure consistency and
a standardized definition. A documentation attribute also belongs
to theParameterelement. This attribute is also occurring in other
places of the specification. TheEventssection is divided into
InputEventsand OutputEvents. InputDevicesand OutputDevices
are listed in the following main section. Both events and de-
vices possess a unique id, a type and a description. TheDevices
element might also containInDeviceEventMappingsand OutDe-
viceEventMappingswith so called event maps. EachEventMap
maps a device event to an interface event and vice versa.

Finally, theExecutionandStatesparts provide several ways to
illustrate the basic functionality and algorithm(s) behind a 3DIC.
Executionincludes elements and attributes for an informal imper-

ative description, references to Web pages including code or ad-
ditional descriptions as well as direct notations of pseudocode or
even program code. By now the different states are only described
as simple entries. However, it should not be difficult to add for-
mal state machine descriptions on the basis of XML such as XML
Metadata Interchange (XMI) for UML state machines [38].

Figure 3: Basic Structure of the Specific-3DIC Description with the
XML specification language ICDL

Generic 3DICs are very similar in structure and only differ in mi-
nor aspects. Due to their generalized nature they do not include de-
vices at all, thus being independent of concrete realizations. Within
the Identificationelement references to several other S-3DICs can
be included to establish a link to the basis of the conducted abstrac-
tion. In addition to that theOrigin is an optional element, since
generic descriptions of 3D interaction techniques or widgets are
only rarely to be found within the literature by now.

IEEE VR 2006 Workshop “Specification of Mixed Reality User Interfaces”

9

4.3 3DIC XML Example

Listing 7 shows the main elements of the XML definition of a ring
menu [19]. This is an example of a specific 3DIC implementation
adapted for the area of Desktop VR. Please note the rich description
within the Identificationelement including some additional meta
data. Also note that a few documentation attributes or elements are
omitted for better readability and can be found online [1].

The presented specification language ICDL and sample instance
documents lay the ground for further improvements, which may
eventually lead to future standards for developing mixed reality ap-
plications. To evaluate the language we have written a number of
example specifications for specific (see for example Listing7) and
generic 3DICs including all 3DICs presented in Section 3.4.Due
to the XML format and its flexible structure a number of operations
can be performed on the language and instance documents, such
as translation to other formats by XSLT, consistent code genera-
tion, uniform web–based presentation [1], graphical visualization
schemes for 3DIC relationships, creation of authoring tools, and ex-
tensions such as translations to other specification languages (e.g.
InTml [11]) or meta data languages (e.g. XMI [38]).

5 CONCLUSIONS AND FUTURE WORK

We have presented a conceptual model and a specification language
that can be used to describe components of 3D user interfacesin a
more formal and extensive way than it is currently common prac-
tice. Relevant properties and characteristics of 3DICs have been
identified and a conceptual model for 3DICs, including parameters,
input and output events, devices and device mappings, states, and
execution has been proposed. Based on the model the XML-based
specification language ICDL has been developed that is human-
readable and that allows for automatic processing and toolssupport.
A detailed and extensive repository of generalized 3DICs may in-
crease the accessibility of existing concepts and may support their
selection and reuse. Several examples describing well-known inter-
face components for immersive VR, Desktop VR and Augmented
Reality show the applicability of the formal notation and the XML-
based language. The model and the XML-based language ICDL
provide the basics for a growing specification. Nevertheless, a num-
ber of issues remain open and need to be addressed in further re-
search.

The current description of 3DICs concentrates on a restricted set
of properties and characteristics. Certain aspects that might be im-
portant for the selection and the automatic processing of 3DICs,
such as supported tasks or required user skills have not beenad-
dressed yet. In addition, further work needs to be done on thedata
types. The types used for devices, events and parameters need to
be extended to support the consistent description of a wide range
of 3DICs. Guidelines and standards for the pseudocode wouldalso
contribute to a more uniform and consistent description of 3DICs
among several authors.

Advanced user interface concepts, such as adaptive 3D user in-
terfaces in general or run-time-exchangeable interactioncompo-
nents [20] in particular require a formal and machine-readable no-
tation of interface components. The specification languagemight
need to be extended to support these developments.

To learn about the advantages and drawbacks of the current ver-
sion of the conceptual model and the specification language and to
improve them, they have to be used to describe further interface
components. We are therefore aiming at a publicly availablerepos-
itory, where people can access and upload specifications of 3DICs.
A first version of such a repository can be found online at [1].These
community efforts along with concluding refinement and extension
of the proposed model and language might eventually lead to their
standardization.

<Specific-3DIC ...>
<Identification name="RingMenu">

<Modification version="4.0" date="..." author="..."
<Related3DIC id="LiangRingMenu"/>
<ExtensionOf id="GenericMenu"/>
<SuitableDomain>Desktop-VR</SuitableDomain>
<SuitableDomain>Fishtank-VR</SuitableDomain>
<TargetGroup>Anybody</TargetGroup>
<MetaData name="bestNumber" type="range">3-15</MetaData>
...

</Identification>
<Origin>

<bibtex:entry bibtex:id="Liang94">...</bibtex:entry>
</Origin>
<Documentation>

<Description>A ring menu is composed of...</Description>
<Picture>RingMenuPicture.jpg</Picture>

</Documentation>
<States>

<State>OBJECT_SELECTED</State>
<State>MENU_ROTATING</State>

</States>
<Parameters>

<Parameter id="itemList" type="MFObject3D" doc="..."/>
<Parameter id="firstSelected" type="Object3D" doc="..."/>
<Parameter id="rotationSpeed" type="SFFloat"/>
<Parameter id="itemRatio" type="SFFloat"/>
...
<Parameter id="highlightGeometry" type="Object3D"/>

</Parameters>
<Events>

<InputEvents>
<Event id="directItemSelection" type="Object3D"/>
<Event id="activateRotationLeft" type="SFBool"/>
<Event id="activateRotationRight" type="SFBool"/>

</InputEvents>
<OutputEvents>

<Event id="currentItemChanged" type="SFBool"/>
<Event id="selectedItem" type="Object3D"/>

</OutputEvents>
</Events>
<Devices>

<InputDevices>
<Device id="mouse" type="2DOF"/>

</InputDevices>
<InDeviceEventMappings>

<EventMap doc="Menu rotated while mouse over...">
<DeviceEvent>mouse.pos2D</DeviceEvent>
<InterfaceEvent>ActivateRotationLeft</InterfaceEvent>

</EventMap>
...

</InDeviceEventMappings>
</Devices>
<Execution>

<WebReference>...</WebReference>
<PseudoCode>

...
activateRotationRight(value, timestamp)
{

selectedItem = rotateRight();
currentItemChanged = true;

}
...

</PseudoCode>
</Execution>

</Specific-3DIC>

Listing 7: XML example of a specific 3DIC (Ring Menu)

IEEE VR 2006 Workshop “Specification of Mixed Reality User Interfaces”

10

REFERENCES

[1] Website with additional material for this paper (contains the ICDL
XML Schema and several examples of 3DICS). http://www.3D-
components.org/3DIC, 2005.

[2] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal,
Stephen M. Williams, and Jonathan E. Shuster. UTML: An appliance-
independent XML user interface language. InWWW ’99: Proceed-
ing of the eighth international conference on World Wide Web, pages
1695–1708, New York, NY, USA, 1999. Elsevier North-Holland, Inc.

[3] Ronald Azuma, Yohan Baillot, Reinhold Behringer, Steven Feiner, Si-
mon Julier, and Blair MacIntyre. Recent advances in augmented real-
ity. IEEE Comput. Graph. Appl., 21(6):34–47, 2001.

[4] Grady Booch, James Rumbaugh, and Ivar Jacobson.The Unified Mod-
eling Language User Guide. Addison-Wesley, 1999.

[5] Doug Bowman, Ernst Kruijff, Jr. Joseph J. LaViola, and Ivan
Poupyrev.3D User Interfaces: Theory and Practice. Addison Wesley,
July 2004.

[6] Stuart K. Card, Jock D. Mackinlay, and George G. Robertson. The de-
sign space of input devices. InProceedings of the SIGCHI conference
on Human factors in computing systems, pages 117–124. ACM Press,
1990.

[7] Rikk Carey and Gavin Bell.The Annotated Vrml 2.0 Reference Man-
ual. Addison-Wesley, 1997.

[8] D. Brookshire Conner, Scott S. Snibbe, Kenneth P. Herndon, Daniel C.
Robbins, Robert C. Zeleznik, and Andries van Dam. Three-
dimensional widgets. InACM Symposium on Interactive 3D Graphics,
pages 183–188, Cambridge, Massachusetts (USA), 1992. ACM Press,
New York.

[9] Raimund Dachselt and Michael Hinz. Three-dimensional widgets re-
visited - towards future standardization. InIEEE VR 2005 Workshop
‘New Directions in 3D User interfaces’. Shaker Verlag, 2005.

[10] Raimund Dachselt, Michael Hinz, and Klaus Meissner. Contigra: An
XML-based architecture for component-oriented 3d applications. In
Seventh International Conference on 3D Web Technology, pages 155–
163, Tempe, Arizona (USA), 2002. ACM Press, New York.

[11] Pablo Figueroa, Mark Green, and H. James Hoover. InTml:a descrip-
tion language for vr applications. InWeb3D ’02: Proceeding of the
seventh international conference on 3D Web technology, pages 53–58.
ACM, ACM Press, 2002.

[12] George W. Fitzmaurice, Hiroshi Ishii, and William Buxton. Bricks:
Laying the foundations for graspable user interfaces. InCHI, pages
442–449, 1995.

[13] James D. Foley and Victor L. Wallace. The art of natural man-machine
conversation. InProceedings of the IEEE, pages 417–426, 1974.

[14] Chris Hand. A survey of 3d interaction techniques. InEurographics.
Blackwell Publishers, 1997.

[15] ECMA International. Ecma – 262: Ecmascript language specification.
http://www.ecma-international.org/publications/standards/Ecma-
262.htm.

[16] G. Drew Kessler, Doug A. Bowman, and Larry F. Hodges. Thesim-
ple virtual environment library: An extensible framework for building
VE applications.Presence: Teleoperators and Virtual Environments,
9(2):187–208, 2000.

[17] Florian Ledermann and Dieter Schmalstieg. APRIL a high-level
framework for creating augmented reality presentations. In Proceed-
ings of IEEE Virtual Reality Conference 2005 (VR’05), pages 187–
194, 2005.

[18] Ulrich Leiner, Bernhard Preim, and Stephan Ressel. Development of
3d-widgets - Overview (only in German). InSimulation und Anima-
tion, pages 170–188, Magdeburg, 1997. SCS Europe, Erlangen.

[19] Jiandong Liang and Mark Green. JDCAD: A highly interactive 3d
modeling system.Computers and Graphics, 18(4):499–506, 1994.

[20] Irma Lindt. Exchangeability of 3d interaction techniques. InProceed-
ings of the IEEE Workshop on New Directions in 3D User Interfaces,
pages 93–94. Shaker Verlag, 2005.

[21] Blair MacIntyre, Maribeth Gandy, Steven Dow, and Jay David Bolter.
Dart: a toolkit for rapid design exploration of augmented reality expe-
riences.ACM Trans. Graph., 24(3):932–932, 2005.

[22] Paul Milgram and Fumio Kishino. A taxonomy of mixed reality visual

displays. IEICE Transactions on Information Systems, E77-D(12),
December 1994.

[23] I. Poupyrev, S. Weghorst, M. Billinghurst, and T. Ichikawa. Egocen-
tric object manipulation in virtual environments: Empirical evaluation
of interaction techniques. InEurographics, pages 41–52. Blackwell
Publishers, 1998.

[24] Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst, and Tadao
Ichikawa. The go-go interaction technique: non-linear mapping for
direct manipulation in vr. InProceedings of the 9th annual ACM
symposium on User interface software and technology, pages 79–80.
ACM, ACM Press, 1996.

[25] Ivan Poupyrev, Desney Tan, Mark Billinghurst, Hirokazu Kato,
Holger Regenbrecht, and Nobuji Tetsutani. Developing a generic
augmented-reality interface.Computers and Graphics, 35(3):44–50,
2002.

[26] Ivan Poupyrev, Desney S Tan, Mark Billinghurst, Hirokazu Kato, Hol-
ger Regenbrecht, and Nobuji Tetsutani. Tiles: A mixed reality author-
ing interface. InINTERACT 2001 Conference on Human Computer
Interaction, Tokyo, Japan, 2001.

[27] Gerhard Reitmayr and Dieter Schmalstieg. An open software architec-
ture for virtual reality interaction. InProceedings of the ACM sympo-
sium on Virtual reality software and technology, pages 47–54. ACM
Press, 2001.

[28] Christian Sandor and Thomas Reicher. CUIML: A languagefor the
generation of multimodal human-computer interfaces. InProceedings
of the European UIML conference, 2001.

[29] Bastiaan Schönhage and Anton Eliëns. Dynamic and mobile vrml
gadgets. InVRML ’99: Proceedings of the fourth symposium on Vir-
tual reality modeling language, pages 47–52, New York, NY, USA,
1999. ACM Press.

[30] Chris Shaw, Jiandong Liang, Mark Green, and Yunqi Sun. The de-
coupled simulation model for virtual reality systems. InProceedings
of the SIGCHI conference on Human factors in computing systems,
pages 321–328. ACM Press, 1992.

[31] William R. Sherman and Alan Craig.Understanding Virtual Reality :
Interface, Application, and Design. Morgan Kaufmann, 2003.

[32] Paul S. Strauss and Rikk Carey. An object-oriented 3d graphics
toolkit. In SIGGRAPH ’92: Proceedings of the 19th annual confer-
ence on Computer graphics and interactive techniques, pages 341–
349, New York, NY, USA, 1992. ACM Press.

[33] Sun Microsystems. Java 3D Home Page.
http://java.sun.com/products/ java-media/3D/index.html, 1997.

[34] Shari Trewin, Gottfried Zimmermann, and Gregg Vanderheiden. Ab-
stract user interface representations: how well do they support uni-
versal access? InCUU ’03: Proceedings of the 2003 conference on
Universal usability, pages 77–84, New York, NY, USA, 2003. ACM
Press.

[35] Web3D Consortium. ISO/IEC FDIS 19777-1:2005. exten-
sible 3D (X3D) language bindings part 1: ECMAScript.
http://www.web3d.org/x3d/specifications/ISO-IEC-19777-1-
X3DLanguageBindings-ECMAScript/.

[36] Web3D Consortium. Extensible 3D (X3DT M) Graphics. Home Page.
http://www.web3d.org/x3d.html, 2003.

[37] Online 3d widget classification. http://www.3d-components.org.
[38] XML metadata interchange (XMI) official page.

http://www.omg.org/technology/documents/formal/xmi.htm, 2005.

IEEE VR 2006 Workshop “Specification of Mixed Reality User Interfaces”

11

