CONTIGRA

Towards a Document-based
Approach to 3D Components

Raimund Dachselt
Dresden University of Technology
Heinz-Nixdorf Endowed Chair for Multimedia Technology

Workshop on Structured Design of Virtual Environments and 3D-Components
at the Web3D 2001 Conference in Paderborn / Germany, 19" February 2001

. Outline

m Introduction
m Classification of 3D-Component Approaches
m Requirements for a 3D Component Architecture

m The CONTIGRA Approach

m Conclusion & Future Work

2/15 3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden

Introduction
Classification

Requirements IntrOd UCtion

CONTIGRA
Conclusion

Various applications areas & types of 3D VE's:

3D objects integrated into HTML-pages
complex virtual environments to interact/walk through
3D applications, 3D-GUI/widgets, 3D objects as documents

m Variety of proprietary web 3D formats, not only X3D

m Many new 3D technologies & tools exist, but
development very difficult, need for expert knowledge

due to format dependencies, missing standards and lack of SE support

3D graphics APIs are flexible and powerful, but not suited for rapid
prototyping, difficult for non-programmers (Vision: less or no coding)

3D exchange formats easier to handle, not enough expressiveness,
extensibility and concepts of reuse

few authoring tools, often proprietary, no support of interdisciplinary design
(Vision: high-level, graphical approach)

produced 3D scenes or applications monolithic, reuse difficult, rarely
platform independence or adaptability (Vision: reuse, SE support)

- Potential: component-based development for 3D app.

3/15 3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden

Introduction
Classification

Requirements
CONTIGRA
Conclusion

4/15

Introduction

Component technologies rarely used in 3D systems:
— CORBA, DCOM or EJB not tailored to 3D applications on the web

Code-centered view

— most current component technologies oriented towards
code construction using imperative programming languages

Focus of this work:

Document-centered view
— developing GUI's and multimedia applications (with authoring tools, UIB)

— compound document architectures like Microsoft OLE, OpenDoc or
HTML-pages with embedded objects (not made for 3D graphics)

— 3D objects usually generated by modeling tools and not coded
(mere programming of 3D graphics no longer feasible)

— promising to describe VE's in a declarative fashion, borders between
(passive) 3D documents and (functional) interface elements blurred

— JavaBeans component technology example for this declarative approach

- Vision: 3D components (3D widgets, agents...) can be easily configured
and composed into VE’'s and interactive 3D graphical applications

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden

Introduction

Classification |}
Requirements
CONTIGRA
Conclusion

5/15

Classification of 3D-Component Approaches

Early Approaches

— mechanisms to extend node types and create abstractions to scene graphs
— Open Inventor Node Kits (realized as DLL/DSO)

— VRML Prototypes, similar concept, based on declarative document syntax

Code-centered Approaches

— NPSNET-V supports scalable, distributed VE's (Java) + component system
Bamboo (cross-platform/language operation of code modules)

— Scene-Graph-As-Bus: independent distributed 3D components, no
component interface model, scene graph APl = neutral scene graph layer

Approaches using existing component technologies
— based on existing component technologies + 3D graphics / scene graphs
— typically JavaBeans and Java3D

— Three-dimensional Beans, employ these technologies and allow authoring
of 3D Beans in the 3D Beanbox

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden

Introduction

Classification |
Requirements
CONTIGRA
Conclusion

6/15

Classification of 3D-Component Approaches

Dedicated 3D Component Solutions
— based on existing 3D APl / format, proprietary extension/integration
— Component interfaces / scene assemblies described in XML documents

— i4D architecture: framework for structured design of VR/AR content,
high-level descriptions (XML), components (DLL/DSO), layered architecture

— Smart Virtual Prototypes: simulation components consisting of Ul objects
(VRML Prototypes), interactor components (Client side) and virtual
components (Server side) as Java classes

Document-centered Approaches
— XML description languages for component interfaces (BML, CORBA CD, EJB DD)

— Jamal declarative component framework based on a flexible and ex-
pandable Component Interface Model (XML), Bean Markup Language (BML)
used for declarative description of component connections, Java3D

— isomorphisms between VRML-Protos, X3D-documents, Java Beans and IDL
—> abstract definition of component interfaces and connections

— CONTIGRA approach described later

Various strengths, dependence on platforms, 3D APIs or CT
Mix of description formats (IDL + data sheet + C header + text)

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden

Introduction

Classification |}

il Classification of 3D-Component Approaches

CONTIGRA
Conclusion

E abstraction

. to any CT
=)
2w
o o
€ 8
'E E standard
Ay & cT
e °
Q
c
o
CEL 3 proprietary
o CT
(v

no CT

CONTIGRA
Jamal
Bamboo
3D Beans
i4D
Open Inventor Smart Virtual
NPSNET Node Kits Prototypes
Scene-Graph- VRML
As-Bus Prototypes
coding O0O-oding scripting declarative documents
low-level description high-level

Programming Level

Other dimensions: Language-dependence and 3D Toolkit/Format - Dependence

7/15 3D-Components-Workshop at Web3D 2001

© 02/2001, Raimund Dachselt, TU Dresden

Introduction

Classification

il Requirements for 3D Component Architectures

CONTIGRA
Conclusion

— providing abstractions, hiding implementations
— separating production and deployment (reuse), 3rd party development
— composability

m Technical Requirements
for component interoperability, architecture, framework, runtime

Portability:

— independence from specific 3D toolkits, programming languages,
component technologies, target platforms, special browsers/plug-ins

— late binding through using 1) Java, 2) scripting languages, 3) generalized,
abstract document formats

Distribution: web-enabled & distributed applications
Interoperability: distributed event model, dynamic component loading
Performance:

— small size and efficiency, compression, streaming support, (binary format)
Adaptation:

- network bandwidth, client platforms, user preferences, languages, cultures

8/15 3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden

Introduction

Classification

CONTIGRA
Conclusion

9/15

Requirements for 3D Component Architectures

Authoring Requirements

for component description, composition, authoring tools

Abstraction:
— high-level, beyond scene graph semantics; component encapsulation

Rich component interfaces
— for representation, storage, retrieval / acquisition and deployment

— offered/required services, explicit dependencies, contract semantics,
configurable geometry parts, alternative representations etc.

— meta data for searching, distribution and sales like version, author,
company, license model/payment options, conformance to standards etc.

— meta data for semantically important information like may-contain, suited
for, in context with or recommended number of items;

— documentation and description of the component

Authorability:

— support of authoring tools and rapid prototyping

— support of a declarative syntax, scripting facilities and programming access
— declarative description of 3D VE’s (for interdisciplinary development)

— configuration of parameters + design parts / component geometry

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden

Introduction
Classification

Requirements
CONTIGRA |
Conclusion

10/15

The CONTIGRA Approach

Overview

Component-oriented Three-dimensional
Interactive Graphical Applications

3D component concept

— thatis largely independent of implementation issues (Toolkits, CT, ...)
— allows easy, declarative and interdisciplinary authoring of 3D applications

first step: introduction of an abstract component
framework for 3D widgets based on UML/XML

CONTIGRA architecture

provides a component framework for 3D graphics
— based on structured documents describing,

— the component implementation,

— their interfaces and assembly/configuration

heart of the architecture: markup languages

— for consistent, declarative description
from scene graph level up to complex 3D scenes

— XML-documents describing a 3D VE are being translated to particular
3D technologies at the latest possible point

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden

Introduction

e The CONTIGRA Approach

CONTIGRA |

it Advantages of using XML

XML

data format for structured document interchange +
declarative description of program logic (e.g. behavior)
Other Advantages:

Platform independence of the format itself

Standardization and interoperability with other media and
internet standards (XHTML, SMIL,...)

Availability of XML-tools, databases, search engines

Component description suitable for automated tools & human readable
Structured description of meta data for selection, evaluation & integration
Homogenous component documentation (with interface)

Suitability for document hierarchies, match scene graph concept

Usage of the Document Object Model (DOM) or XSL T
to transform documents

m CONTIGRA markup languages:

multi-layered XML grammars, hierarchical inclusion

11/15 3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden

Introduction

e The CONTIGRA Approach
Sl XVIL Suite

m CONTIGRA SceneGraph

"implementation” of a 3D component (geometry and behavior)
XML coding of scene graph semantics similar to X3D

from scene graphs to a universal / neutral scene graph format
mapping to actual scene graph based formats (Java3D, VRML...)
clear separation between geometry and behavior graph
predefined behavior nodes + integration of scripts & other code
extensible set of geometry and behavior nodes + subsets of nodes

—> abstraction to proprietary 3D formats

m CONTIGRA SceneComponent

12/15 3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden

— component description language for component interfaces
implementation encapsulation (of the SceneGraph part), abstraction to SG’s

CONTIGRA SceneComponent documents separated from implementation
—> easy storage, distribution, search or suitability checks

Different sections:
header: data like id, description or type name + meta information

interface: generalized sensor interface, configurable parts, attributes and
services of the component

Introduction

Classification

wites® The CONTIGRA Approach

CONTIGRA .

Conclusion , XML SU|te
— deployment: requirements, component dependencies, component

semantics, license information

— content: references to SceneGraph documents and children components
— authoring: alternative representations, links to component editors

— documentation
— not all sections are required

m CONTIGRA Scene

— high level configuration language for component integration

— hierarchical assembly of configured scene component instances

— component cooperation with declarative elements of connection oriented
programming

— also abstraction to scene graph functionality (except transformations)

— 3D scene/application parameters coded with elements:
cameras, runtime performance hints, integration with other media or web
pages, desired window sizes etc.

— CONTIGRA Scene document represents a declarative description of a 3D
application based on assembled component descriptions

— exchange format for 3D authoring tools

13/15 3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden

Introduction

Classification

Requirements The CONTIGRA ApproaCh

CONTIGRA |
Conclusion

- no deliverable program, but a complete description of a potential executable

— CONTIGRA Scene description:
transformed into stand alone application during configuration time
translated into executable code during runtime (DOM, XSL-T)

— Java classes or IDL interfaces can be used as linking elements (XML / code)

— markup languages currently encoded as Document Type Definitions (DTD),
XML Schema definition language (XSD) possible successor

Advantages

— separation of component design and deployment

— support of declarative authoring

— 3D applications and VE's independent of specific 3D toolkits

Difficulties

— development of a neutral/general scene graph format (CONTIGRA
SceneGraph, at present X3D)

— high flexibility and abstractions demand powerful translators
(plenty of work to do!)

— expression of behavior / functionality more complicated without coding

14/15 3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden

Introduction

Classification

el Conclusion and Future Work

CONTIGRA
Conclusion

Necessity of structured, reusable design of 3D worlds

m Introduction & classification of current
3D component approaches

m Definition of requirements for 3D component
architectures

m Document-based CONTIGRA-approach

m Further improvements of grammars/ XML schemes

m Development of the runtime-framework,
prove of concept

m 3D User Interface Builder

m Looking forward to moderate the working group

15/15 3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden

