
Workshop on Structured Design of Virtual Environments and 3D-Components
at the Web3D 2001 Conference in Paderborn / Germany, 19th February 2001

Raimund Dachselt
Dresden University of Technology
Heinz-Nixdorf Endowed Chair for Multimedia Technology

CONTIGRA
Towards a Document-based
Approach to 3D Components

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden2/15

Outline

� Introduction

� Classification of 3D-Component Approaches

� Requirements for a 3D Component Architecture

� The CONTIGRA Approach

� Conclusion & Future Work

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden3/15

Introduction
Classification
Requirements
CONTIGRA
Conclusion

Introduction

� Various applications areas & types of 3D VE’s:
– 3D objects integrated into HTML-pages
– complex virtual environments to interact/walk through
– 3D applications, 3D-GUI/widgets, 3D objects as documents

� Variety of proprietary web 3D formats, not only X3D
� Many new 3D technologies & tools exist, but

development very difficult, need for expert knowledge
– due to format dependencies, missing standards and lack of SE support
– 3D graphics APIs are flexible and powerful, but not suited for rapid

prototyping, difficult for non-programmers (Vision: less or no coding)
– 3D exchange formats easier to handle, not enough expressiveness,

extensibility and concepts of reuse
– few authoring tools, often proprietary, no support of interdisciplinary design

(Vision: high-level, graphical approach)
– produced 3D scenes or applications monolithic, reuse difficult, rarely

platform independence or adaptability (Vision: reuse, SE support)

� Potential: component-based development for 3D app.

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden4/15

Introduction
Classification
Requirements
CONTIGRA
Conclusion

Introduction

� Component technologies rarely used in 3D systems:
– CORBA, DCOM or EJB not tailored to 3D applications on the web

Code-centered view
– most current component technologies oriented towards

code construction using imperative programming languages

� Focus of this work:
Document-centered view
– developing GUI’s and multimedia applications (with authoring tools, UIB)
– compound document architectures like Microsoft OLE, OpenDoc or

HTML-pages with embedded objects (not made for 3D graphics)
– 3D objects usually generated by modeling tools and not coded

(mere programming of 3D graphics no longer feasible)
– promising to describe VE’s in a declarative fashion, borders between

(passive) 3D documents and (functional) interface elements blurred
– JavaBeans component technology example for this declarative approach

�Vision: 3D components (3D widgets, agents...) can be easily configured
and composed into VE’s and interactive 3D graphical applications

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden5/15

Introduction
Classification
Requirements
CONTIGRA
Conclusion

Classification of 3D-Component Approaches

Early Approaches
– mechanisms to extend node types and create abstractions to scene graphs
– Open Inventor Node Kits (realized as DLL/DSO)
– VRML Prototypes, similar concept, based on declarative document syntax

Code-centered Approaches
– NPSNET-V supports scalable, distributed VE’s (Java) + component system

Bamboo (cross-platform/language operation of code modules)
– Scene-Graph-As-Bus: independent distributed 3D components, no

component interface model, scene graph API � neutral scene graph layer

Approaches using existing component technologies
– based on existing component technologies + 3D graphics / scene graphs
– typically JavaBeans and Java3D
– Three-dimensional Beans, employ these technologies and allow authoring

of 3D Beans in the 3D Beanbox

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden6/15

Introduction
Classification
Requirements
CONTIGRA
Conclusion

Classification of 3D-Component Approaches

Dedicated 3D Component Solutions
– based on existing 3D API / format, proprietary extension/integration
– Component interfaces / scene assemblies described in XML documents
– i4D architecture: framework for structured design of VR/AR content,

high-level descriptions (XML), components (DLL/DSO), layered architecture
– Smart Virtual Prototypes: simulation components consisting of UI objects

(VRML Prototypes), interactor components (Client side) and virtual
components (Server side) as Java classes

Document-centered Approaches
– XML description languages for component interfaces (BML, CORBA CD, EJB DD)
– Jamal declarative component framework based on a flexible and ex-

pandable Component Interface Model (XML), Bean Markup Language (BML)
used for declarative description of component connections, Java3D

– isomorphisms between VRML-Protos, X3D-documents, Java Beans and IDL
� abstract definition of component interfaces and connections

– CONTIGRA approach described later

Various strengths, dependence on platforms, 3D APIs or CT
Mix of description formats (IDL + data sheet + C header + text)

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden7/15

Introduction
Classification
Requirements
CONTIGRA
Conclusion

Classification of 3D-Component Approaches

Other dimensions: Language-dependence and 3D Toolkit/Format - Dependence

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden8/15

Requirements for 3D Component Architectures

– providing abstractions, hiding implementations
– separating production and deployment (reuse), 3rd party development
– composability

� Technical Requirements
for component interoperability, architecture, framework, runtime
Portability:
– independence from specific 3D toolkits, programming languages,

component technologies, target platforms, special browsers/plug-ins
– late binding through using 1) Java, 2) scripting languages, 3) generalized,

abstract document formats

Distribution: web-enabled & distributed applications

Interoperability: distributed event model, dynamic component loading

Performance:
– small size and efficiency, compression, streaming support, (binary format)

Adaptation:
– network bandwidth, client platforms, user preferences, languages, cultures

Introduction
Classification
Requirements
CONTIGRA
Conclusion

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden9/15

Requirements for 3D Component Architectures

� Authoring Requirements
for component description, composition, authoring tools
Abstraction:
– high-level, beyond scene graph semantics; component encapsulation

Rich component interfaces
– for representation, storage, retrieval / acquisition and deployment
– offered/required services, explicit dependencies, contract semantics,

configurable geometry parts, alternative representations etc.
– meta data for searching, distribution and sales like version, author,

company, license model/payment options, conformance to standards etc.
– meta data for semantically important information like may-contain, suited

for, in context with or recommended number of items;
– documentation and description of the component

Authorability:
– support of authoring tools and rapid prototyping
– support of a declarative syntax, scripting facilities and programming access
– declarative description of 3D VE’s (for interdisciplinary development)
– configuration of parameters + design parts / component geometry

Introduction
Classification
Requirements
CONTIGRA
Conclusion

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden10/15

Component-oriented Three-dimensional
Interactive Graphical Applications

� 3D component concept
– that is largely independent of implementation issues (Toolkits, CT, …)
– allows easy, declarative and interdisciplinary authoring of 3D applications

� first step: introduction of an abstract component
framework for 3D widgets based on UML/XML

� CONTIGRA architecture
provides a component framework for 3D graphics
– based on structured documents describing,
– the component implementation,
– their interfaces and assembly/configuration
heart of the architecture: markup languages
– for consistent, declarative description

from scene graph level up to complex 3D scenes
– XML-documents describing a 3D VE are being translated to particular

3D technologies at the latest possible point

The CONTIGRA Approach
Overview

Introduction
Classification
Requirements
CONTIGRA
Conclusion

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden11/15

� XML
data format for structured document interchange +
declarative description of program logic (e.g. behavior)
Other Advantages:
– Platform independence of the format itself
– Standardization and interoperability with other media and

internet standards (XHTML, SMIL,…)
– Availability of XML-tools, databases, search engines
– Component description suitable for automated tools & human readable
– Structured description of meta data for selection, evaluation & integration
– Homogenous component documentation (with interface)
– Suitability for document hierarchies, match scene graph concept
– Usage of the Document Object Model (DOM) or XSL T

to transform documents

� CONTIGRA markup languages:
multi-layered XML grammars, hierarchical inclusion

The CONTIGRA Approach
Advantages of using XML

Introduction
Classification
Requirements
CONTIGRA
Conclusion

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden12/15

� CONTIGRA SceneGraph
– "implementation" of a 3D component (geometry and behavior)
– XML coding of scene graph semantics similar to X3D
– from scene graphs to a universal / neutral scene graph format
– mapping to actual scene graph based formats (Java3D, VRML…)
– clear separation between geometry and behavior graph
– predefined behavior nodes + integration of scripts & other code
– extensible set of geometry and behavior nodes + subsets of nodes
� abstraction to proprietary 3D formats

� CONTIGRA SceneComponent
– component description language for component interfaces
– implementation encapsulation (of the SceneGraph part), abstraction to SG’s
– CONTIGRA SceneComponent documents separated from implementation

� easy storage, distribution, search or suitability checks
– Different sections:
– header: data like id, description or type name + meta information
– interface: generalized sensor interface, configurable parts, attributes and

services of the component

The CONTIGRA Approach
XML Suite

Introduction
Classification
Requirements
CONTIGRA
Conclusion

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden13/15

– deployment: requirements, component dependencies, component
semantics, license information

– content: references to SceneGraph documents and children components
– authoring: alternative representations, links to component editors
– documentation
– not all sections are required

� CONTIGRA Scene
– high level configuration language for component integration
– hierarchical assembly of configured scene component instances
– component cooperation with declarative elements of connection oriented

programming
– also abstraction to scene graph functionality (except transformations)
– 3D scene/application parameters coded with elements:

cameras, runtime performance hints, integration with other media or web
pages, desired window sizes etc.

– CONTIGRA Scene document represents a declarative description of a 3D
application based on assembled component descriptions

– exchange format for 3D authoring tools

The CONTIGRA Approach
XML Suite

Introduction
Classification
Requirements
CONTIGRA
Conclusion

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden14/15

– no deliverable program, but a complete description of a potential executable
– CONTIGRA Scene description:

transformed into stand alone application during configuration time
translated into executable code during runtime (DOM, XSL-T)

– Java classes or IDL interfaces can be used as linking elements (XML / code)
– markup languages currently encoded as Document Type Definitions (DTD),

XML Schema definition language (XSD) possible successor

Advantages
– separation of component design and deployment
– support of declarative authoring
– 3D applications and VE’s independent of specific 3D toolkits

Difficulties
– development of a neutral/general scene graph format (CONTIGRA

SceneGraph, at present X3D)
– high flexibility and abstractions demand powerful translators

(plenty of work to do!)
– expression of behavior / functionality more complicated without coding

Introduction
Classification
Requirements
CONTIGRA
Conclusion

The CONTIGRA Approach

3D-Components-Workshop at Web3D 2001 © 02/2001, Raimund Dachselt, TU Dresden15/15

Introduction
Classification
Requirements
CONTIGRA
Conclusion

Conclusion and Future Work

� Necessity of structured, reusable design of 3D worlds
� Introduction & classification of current

3D component approaches
� Definition of requirements for 3D component

architectures
� Document-based CONTIGRA-approach

� Further improvements of grammars/ XML schemes
� Development of the runtime-framework,

prove of concept
� 3D User Interface Builder

� Looking forward to moderate the working group

