
Available

CAV
Evaluation

Artifact

Functional

CAV
Evaluation

Artifact

Explaining Hyperproperty Violations?

Norine Coenen1, Raimund Dachselt2, Bernd Finkbeiner1, Hadar Frenkel1,
Christopher Hahn1, Tom Horak3, Niklas Metzger1, and Julian Siber1(B)

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{norine.coenen,finkbeiner,hadar.frenkel,christopher.hahn,

niklas.metzger,julian.siber}@cispa.de
2 Interactive Media Lab, Technische Universität Dresden, Dresden, Germany

dachselt@acm.org
3 elevait GmbH & Co. KG, Dresden, Germany

tom.horak@elevait.de

Abstract. Hyperproperties relate multiple computation traces to each
other. Model checkers for hyperproperties thus return, in case a system
model violates the specification, a set of traces as a counterexample. Fix-
ing the erroneous relations between traces in the system that led to the
counterexample is a difficult manual effort that highly benefits from addi-
tional explanations. In this paper, we present an explanation method for
counterexamples to hyperproperties described in the specification logic
HyperLTL. We extend Halpern and Pearl’s definition of actual causality
to sets of traces witnessing the violation of a HyperLTL formula, which
allows us to identify the events that caused the violation. We report on
the implementation of our method and show that it significantly im-
proves on previous approaches for analyzing counterexamples returned
by HyperLTL model checkers.

1 Introduction

While model checking algorithms and tools (e.g., [18,17,25,12,54,46]) have, in
the past, focused on trace properties, recent failures in security-critical systems,
such as Heartbleed [27], Meltdown [58], Spectre [51], or Log4j [1], have triggered
the development of model checking algorithms for properties that relate multiple
computation traces to each other, i.e., hyperproperties [21]. Although the coun-
terexample returned by such a model checker for hyperproperties, which takes
the shape of a set of traces, may aid in the debugging process, understanding
and narrowing down which features are actually responsible for the erroneous
relation between the traces in the counterexample requires significantly more

? This work was funded by DFG grant 389792660 as part of TRR 248 – CPEC,
by the DFG as part of the Germany’s Excellence Strategy EXC 2050/1 - Project
ID 390696704 - Cluster of Excellence “Centre for Tactile Internet” (CeTI) of TU
Dresden, by the European Research Council (ERC) Grant OSARES (No. 683300),
and by the German Israeli Foundation (GIF) Grant No. I-1513-407./2019.

https://doi.org/10.6084/m9.figshare.19690858.v8
https://perspicuous-computing.science

2 N. Coenen et al.

manual effort than for trace properties. In this paper, we develop an explana-
tion technique for these more complex counterexamples that identifies the actual
causes [43,44,45] of hyperproperty violations.

Existing hyperproperty model checking approaches (e.g., [32,34,48]), take a
HyperLTL formula as an input. HyperLTL is a temporal logic extending LTL
with explicit trace quantification [20].

For example, observational determinism, which requires that all traces π, π′

agree on their observable outputs lo whenever they agree on their observable
inputs li , can be formalized in HyperLTL as ∀π.∀π′. (liπ ↔ liπ′) → (loπ ↔
loπ′). In case a system model violates observational determinism, the model
checker consequently returns a set of two execution traces witnessing the viola-
tion.

A first attempt in explaining model checking results of HyperLTL specifi-
cations has been made with HyperVis [47], which visualizes a counterexample
returned by the model checker MCHyper [34] in a browser application. While
the visualizations are already useful to analyze the counterexample at hand, it
fails to identify causes for the violation in several security-critical scenarios. This
is because HyperVis identifies important atomic propositions that appear in the
HyperLTL formula and highlights these in the trace and the formula. For detect-
ing causes, however, this is insufficient: a cause for a violation of observational
determinism, for example, could be a branch on the valuation of a secret input
is, which is not even part of the formula (see Sec. 3 for a running example).

Defining what constitutes an actual cause for an effect (a violation) in a
given scenario is a precious contribution by Halpern and Pearl [43,44,45], who
refined and formalized earlier approaches based on counterfactual reasoning [57]:
Causes are sets of events such that, in the counterfactual world where they do
not appear, the effect does not occur either. One of the main insights of Halpern
and Pearl’s work, however, is that naive counterfactuals are too imprecise. If, for
instance, our actual cause preempted another potential cause, the mere absence
of the actual cause will not be enough to prevent the effect, which will be still
produced by the other cause in the new scenario. Halpern and Pearl’s defini-
tion therefore allows to carefully control for other possible causes through the
notion of contingencies. In the modified definition [43], contingencies allow to
fix certain features of the counterfactual world to be exactly as they are in the
actual world, regardless of the system at hand. Such a contingency effectively
modifies the dynamics of the underlying model, and one insight of our work is
that defining actual causality for reactive systems also needs to modify the sys-
tem under a contingency. Notably, most works regarding trace causality [13,38]
do not consider contingencies but only counterfactuals, and thus are not able to
find true actual causes.

In this paper, we develop the notion of actual causality for effects described
by HyperLTL formulas and use the generated causes as explanations for coun-
terexamples returned by a model checker. We show that an implementation of
our algorithm is practically feasible and significantly increases the state-of-the-
art in explaining and analyzing HyperLTL model checking results.

Explaining Hyperproperty Violations 3

2 Preliminaries

We model a system as a Moore machine [61] T = (S, s0, AP, δ, l) where S is
a finite set of states, s0 ∈ S is the initial state, AP = I ∪· O is the set of
atomic propositions consisting of inputs I and outputs O, δ : S × 2I → S is
the transition function determining the successor state for a given state and set
of inputs, and l : S → 2O is the labeling function mapping each state to a set
of outputs. A trace t = t0t1t2 . . . ∈ (2AP)ω of T is an infinite sequence of sets
of atomic propositions with ti = A ∪ l(si), where A ⊆ I and δ(si, A) = si+1

for all i ≥ 0. We usually write t[n] to refer to the set tn at the n-th position
of t. With traces(T), we denote the set of all traces of T . For some sequence of
inputs a = a0a1a2 . . . ∈ (2I)ω, the trace T (a) is defined by T (a)i = ai ∪ l(si)
and δ(si, ai) = si+1 for all i ≥ 0. A trace property P ⊆ T is a set of traces. A
hyperproperty H is a lifting of a trace property, i.e., a set of sets of traces. A
model T satisfies a hyperproperty H if the set of traces of T is an element of the
hyperproperty, i.e., traces(T) ∈ H.

2.1 HyperLTL

HyperLTL is a recently introduced logic for expressing temporal hyperproperties,
extending linear-time temporal logic (LTL) [63] with trace quantification:

ϕ ::= ∀π. ϕ | ∃π. ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ

We also consider the usual derived Boolean (∨, →, ↔) and temporal operators
(ϕRψ ≡ ¬(¬ϕU ¬ψ), ϕ ≡ true U ϕ, ϕ ≡ falseRϕ). The semantics of
HyperLTL formulas is defined with respect to a set of traces Tr and a trace
assignment Π : V → Tr that maps trace variables to traces. To update the trace
assignment so that it maps trace variable π to trace t, we write Π[π 7→ t].

Π, i �Tr aπ iff a ∈ Π(π)[i]
Π, i �Tr ¬ϕ iff Π, i 2Tr ϕ
Π, i �Tr ϕ ∧ ψ iff Π, i �Tr ϕ and Π, i �Tr ψ
Π, i �Tr ϕ iff Π, i+ 1 �Tr ϕ
Π, i �Tr ϕU ψ iff ∃j ≥ i.Π, j �Tr ψ ∧ ∀i ≤ k < j.Π, k �Tr ϕ
Π, i �Tr ∃π. ϕ iff there is some t ∈ Tr such that Π[π 7→ t], i �Tr ϕ
Π, i �Tr ∀π. ϕ iff for all t ∈ Tr it holds that Π[π 7→ t], i �Tr ϕ

We explain counterexamples found by MCHyper [34,23], which is a model
checker for HyperLTL formulas, building on ABC [12]. MCHyper takes as in-
puts a hardware circuit, specified in the Aiger format [8], and a HyperLTL
formula. MCHyper solves the model checking problem by computing the self-
composition [6] of the system. If the system violates the HyperLTL formula,
MCHyper returns a counterexample. This counterexample is a set of traces
through the original system that together violate the HyperLTL formula. De-
pending on the type of violation, this counterexample can then be used to debug
the circuit or refine the specification iteratively.

4 N. Coenen et al.

2.2 Actual Causality

A formal definition of what actually causes an observed effect in a given context
has been proposed by Halpern and Pearl [44]. Here, we outline the version later
modified by Halpern [43]. Causality is defined with respect to a causal model
M = (S,F), given by a signature S and set of structural equations F , which
define the dynamics of the system. A signature S is a tuple (U ,V,D), where U
and V are disjoint sets of variables, termed exogenous and endogenous variables,
respectively; and D defines the range of possible values D(Y) for all variables
Y ∈ U ∪ V. A context ~u is an assignment to the variables in U ∪ V such that
the values of the exogenous variables are determined by factors outside of the
model, while the value of some endogenous variableX is defined by the associated
structural equation fX ∈ F . An effect ϕ in a causal model is a Boolean formula
over assignments to endogenous variables. We say that a context ~u of a modelM
satisfies a partial variable assignment ~X = ~x for ~X ⊆ U ∪ V if the assignments
in ~u and in ~x coincide for every variable X ∈ ~X. The extension for Boolean
formulas over variable assignments is as expected. For a context ~u and a partial
variable assignment ~X = ~x, we denote by (M, ~u)[~X ← ~x] the context ~u′ in which

the values of the variables in ~X are set according to ~x, and all other values are
computed according to the structural equations.

The actual causality framework of Halpern and Pearl aims at defining what
events (given as variable assignments) are the cause for the occurrence of an
effect in a specific given context. We now provide the formal definition.

Definition 1 ([44,43]). A partial variable assignment ~X = ~x is an actual
cause of the effect ϕ in (M, ~u) if the following three conditions hold.

AC1: (M, ~u) � ~X = ~x and (M, ~u) � ϕ, i.e., both cause and effect are true in
the actual world.

AC2: There is a set ~W ⊆ V of endogenous variables and an assignment ~x′ to the
variables in ~X s.t. if (M, ~u) � ~W = ~w, then (M, ~u)[~X ← ~x′, ~W ← ~w] � ¬ϕ.

AC3: ~X is minimal, i.e. no subset of ~X satisfies AC1 and AC2.

Intuitively, AC2 states that in the counterfactual world obtained by interven-
ing on the cause ~X = ~x in the actual world (that is, setting the variables in ~X to
~x′), the effect does not appear either. However, intervening on the possible cause
might not be enough, for example when that cause preempted another. After
intervention, this other cause may produce the effect again, therefore clouding
the effect of the intervention. To address this problem, AC2 allows to reset values
through the notion of contingencies, i.e., the set of variables ~W can be reset to
~w, which is (implicitly) universally quantified. However, since the actual world

has to model ~W = ~w, it is in fact uniquely determined. AC3, lastly, enforces
the cause to be minimal by requiring that all variables in ~X are strictly neces-
sary to achieve AC1 and AC2. For an illustration of Halpern and Pearl’s actual
causality, see Ex. 1 in Sec. 3.

Explaining Hyperproperty Violations 5

3 Running Example

Consider a security-critical setting with two security levels: a high-security level
h and a low-security level l. Inputs and outputs labeled as high-security, denoted
by hi and ho respectively, are confidential and thus only visible to the user itself,
or, e.g., admins. Inputs and outputs labeled as low-security, denoted by li and
lo respectively, are public and are considered to be observable by an attacker.

s0

∅

s1

{ho}

s2

{lo}

s3

{ho, lo}

hi

¬hi hi

>

¬hi

>

Fig. 1: State graph rep-
resentation of our exam-
ple system.

Our system of interest is modeled by the state graph
representation shown in Fig. 1, which is treated as a
black box by an attacker. The system is run without
any low-security inputs, but branches depending on
the given high-security inputs. If in one of the first two
steps of an execution, a high-security input hi is en-
countered, the system outputs only the high-security
variable ho directly afterwards and in the subsequent
steps both outputs, regardless of inputs. If no high-
security input is given in the first step, the low-security
output lo is enabled and after the second step, again
both outputs are enabled, regardless of what input is
fed into the system.

A prominent example hyperproperty is obser-
vational determinism from the introduction: which
states that any sequence of low-inputs always pro-
duces the same low-outputs, regardless of what the
high-security level inputs are. ϕ = ∀π.∀π′. (liπ ↔
liπ′) → (loπ ↔ loπ′). The formula states that all
traces π and π′ must agree in the low-security outputs if they agree in the
low-security inputs. Our system at hand does not satisfy observational de-
terminism, because the low-security outputs in the first two steps depend on
the present high-security inputs. Running MCHyper, a model checker for Hy-
perLTL, results in the following counterexample: t1 = {}{lo}{ho, lo}ω and
t2 = {hi}{hi , ho}{ho, lo}ω . With the same low-security input (none) the traces
produce different low-security outputs by visiting s1 or s2 on the way to s3.

In this paper, our goal is to explain the violation of a HyperLTL formula
on such a counterexample. Following Halpern and Pearl’s explanation frame-
work [45], an actual cause that is considered to be possibly true or possibly false
constitutes an explanation for the user. We only consider causes over input vari-
ables, which can be true and false in any model. Hence, finding an explanation
amounts to answering which inputs caused the violation on a specific counterex-
ample. Before we answer this question for HyperLTL and the corresponding
counterexamples given by sets of traces (see Sec. 4), we first illustrate Halpern
and Pearl’s actual causality (see Sec. 2.2) with the above running example.

Example 1. Finite executions of a system can be modeled in Halpern and Pearl’s
causal models. Consider inputs as exogenous variables U = {hi0, hi1} and out-
puts as endogenous variables V = {lo1, lo2, ho1, ho2}. The indices model at which

6 N. Coenen et al.

step of the execution the variable appears. We omit the inputs at the third po-
sition and the outputs at the first position because they are not relevant for the
following exposition. We have that D(Y) = {0, 1} for every Y ∈ U ∪ V. Now,
the following manually constructed structural equations encode the transitions:
(1) lo1 = ¬hi0, (2) ho1 = hi0, (3) lo2 = ¬hi1 ∨ ¬lo1 and (4) ho2 = lo1 ∨ ho1.
Consider context ~u = {hi0 = 0, hi1 = 1}, effect ϕ ≡ lo1 = 1 ∨ lo2 = 1, and
candidate cause hi0 = 0. Because of Eq. (1), we have that (M, ~u) � hi0 = 0
and (M, ~u) � lo1 = 1, hence AC1 is satisfied. Regarding AC2, this example
allows us to illustrate the need for contingencies to accurately determine the
actual cause: If we only consider intervening on the candidate cause hi0 = 0,
we still have (M, ~u)[hi0 ← 1] � ϕ, because with lo1 = 0 and Eq. (3) it fol-
lows that (M, ~u) � lo2 = 1. However, in the actual world, the second high
input has no influence on the effect. We can control for this by considering
the contingency lo2 = 0, which is satisfied in the actual world, but not af-
ter the intervention on hi0. Because of this contingency, we then have that
(M, ~u)[hi0 ← 1, lo2 ← 0] � ¬ϕ, and hence, AC2 holds. Because a singleton
set automatically satisfies AC3, we can infer that the first high input hi0 was
the actual cause for any low output to be enabled in the actual world. Note that,
intuitively, the contingency allows us to ignore some of the structural equations
by ignoring the value they assign to lo2 in this context. Our definitions in Sec. 4
will allow similar modifications for counterexamples to hyperproperties.

4 Causality for Hyperproperty Violations

Our goal in this section is to formally define actual causality for the violation
of a hyperproperty described by a general HyperLTL formula ϕ, observed in
a counterexample to ϕ. Such a counterexample is given by a trace assignment
to the trace variables appearing in ϕ. Note that, for universal quantifiers, the
assignment of a single trace to the bounded variable suffices to define a coun-
terexample. For existential quantifiers, this is not the case: to prove that an
existential quantifier cannot be instantiated we need to show that no system
trace satisfies the formula in its body, i.e., provide a proof for the whole sys-
tem. In this work, we are interested in explaining violations of hyperproperties,
and not proofs of their satisfaction [16]. Hence, we limit ourselves to instan-
tiations of the outermost universal quantifiers of a HyperLTL formula, which
can be returned by model checkers like MCHyper [34,23]. Since our goal is to
explain counterexamples, restricting ourselves to results returned by existing
model checkers is reasonable. Note that MCHyper can still handle formulas of
the form ∀n∃mϕ where ϕ is quantifier free, including interesting information flow
policies like generalized noninterference [60]. The returned counterexample then
only contains n traces that instantiate the universal quantifiers, the existential
quantifiers are not instantiated for the above reason. In the following, we restrict
ourselves to formulas and counterexamples of this form.

Definition 2 (Counterexample). Let T be a transition system and denote
Traces(T) := Tr, and let ϕ be a HyperLTL formula of the form ∀π1 . . . ∀πkψ,

Explaining Hyperproperty Violations 7

where ψ is a HyperLTL formula that does not start with ∀. A counterexample to ϕ
in T is a partial trace assignment Γ : {π1, . . . , πk} → Tr such that Γ, 0 �Tr ¬ψ.

For ease of notation, we sometimes refer to Γ simply as the tuple of its
instantiations Γ = 〈Γ (π1), . . . , Γ (πk)〉. In terms of Halpern and Pearl’s actual
causality as outlined in Sec. 2.2, a counterexample describes the actual world at
hand, which we want to explain. As a next step, we need to define an appropriate
language to reason about possible causes and contingencies in our counterexam-
ple. We will use sets of events, i.e., values of atomic propositions at a specific
position of a specific trace in the counterexample.

Definition 3 (Event). An event is a tuple e = 〈la, n, t〉 such that la = a or
la = ¬a for some atomic proposition a ∈ AP , n ∈ N is a point in time, and
t ∈ (2AP)ω is a trace of a system T . We say that a counterexample Γ = 〈t1, . . . tk〉
satisfies a set of events C, and denote Γ � C, if for every event 〈la, n, t〉 ∈ C the
two following conditions hold:

1. t = ti for some i ∈ {1, . . . , k}, i.e., all events in C reason about traces in Γ ,
2. la = a iff a ∈ ti[n], i.e., a holds on trace ti of the counterexample at time n.

We assume that the set AP is a disjoint union of input an output propositions,
that is, AP = I ∪· O. We say that 〈la, n, t〉 is an input event if a ∈ I, and we call
it an output event if a ∈ O. We denote the set of input events by IE and the
set of output events by OE . These events have a direct correspondence with the
variables appearing in Halpern and Pearl’s causal models: we can identify input
events with exogenous variables (because their value is determined by factors
outside of the system) and output events with endogenous variables.

We define a cause as a set of input events, while an effect is a possibly infinite
Boolean formula over OE. Note that, similar to [36], every HyperLTL formula
can be represented as a first order formula over events, e.g. ∀π∀π′ (aπ ↔ aπ′) =
∀π∀π′

∧
n∈N(〈a, n, π〉 ↔ 〈a, n, π′〉). For some set of events S, let +Skπ = {a ∈

AP | 〈a, k, π〉 ∈ S} denote the set of atomic propositions defined positively by
S on trace π at position k. Dualy, we define −Skπ = {a ∈ AP | 〈¬a, k, π〉 ∈ S}.

In order to define actual causality for hyperproperties we need to formally
define how we obtain the counterfactual executions under some contingency
for the case of events on infinite traces. We define a contingency as a set of
output events. Mapping Halpern and Pearl’s definition to transition systems,
contingencies reset outputs in the counterfactual traces back to their value in the
original counterexample, which amounts to changing the state of the system, and
then following the transition function from the new state. For a given trace of the
counterexample, we describe all possible behaviors under arbitrary contingencies
with the help of a counterfactual automaton. The concrete contingency on a trace
is defined by additional input variables. In the following, let IC = {oC | o ∈ O}
be a set of auxiliary input variables expressing whether a contingency is invoked
at the given step of the execution and c : O → IC be a function s.t. c(o) = oC .

Definition 4 (Counterfactual Automaton). Let T = (S, s0,AP , δ, l) be a
system with S = 2O , i.e., every state is uniquely labeled, and there exists a state

8 N. Coenen et al.

for every combination of outputs. Let π = π0 . . . πi(πj . . . πn)ω ∈ traces(T) be a
trace of T in a finite, lasso-shaped representation. The counterfactual automaton
TCπ = (S×{0 . . . n}, (s0, 0), (IC ∪· I)∪· (O∪· {0 . . . n}), δC , lC) is defined as follows:

– δC((s, k), Y) = (s′, k′) where k′ = j if k = n, else k′ = k + 1, and
l(s′) = {o ∈ O | (o ∈ δ(s, Y ∩ I) ∧ c(o) 6∈ Y) ∨ (o ∈ πk′ ∧ c(o) ∈ Y)},

– lC(s, k) = l(s) ∪ {k} .

A counterfactual automaton is effectively a chain of copies of the original
system, of the same length as the counterexample. An execution through the
counterfactual automaton starts in the first copy corresponding to the first po-
sition in the counterexample trace, and then moves through the chain until it
eventually loops back from copy n to copy j. A transition in the counterfactual
automaton can additionally specify setting as a contingency some output vari-
able o if the auxiliary input variable oC is enabled. In this case, the execution
will move to a state in the next automaton of the chain where all the outputs
are as usual, except o, which will have the same value as in the counterexample
π. Note that, under the assumption that all states of the original system are
uniquely labeled and there exists a state for every combination of output vari-
ables, the function δC is uniquely determined. 4 A counterfactual automaton for
our running example is described in App. A.1.

Next, we need to define how we intervene on a set of traces with a candidate
cause given as a set of input events, and a contingency given as a set of out-
put events. We define an intervention function, which transforms a trace of our
original automaton to an input sequence of an counterfactual automaton.

Definition 5 (Intervention). For a cause C ⊆ IE, a contingency W ⊆ OE
and a trace π , the function intervene : (2AP)ω × 2IE × 2OE → (2I∪IC)ω returns
a trace such that for all k ∈ N the following holds: intervene(π, C,W)[k] = (π[k]\
+Ckπ)∪−Ckπ ∪{c(o) | o ∈+Wk

π ∪−Wk
π}. We lift the intervention function to coun-

terexamples given as a tuple Γ = 〈π1, . . . , πk〉 as follows: intervene(Γ, C,W) =
〈TCπ1

(intervene(π1, C,W)), . . . , TCπk
(intervene(πk, C,W))〉.

Intuitively, the intervention function flips all the events that appear in the
cause Γ : If some a ∈ I appears positively in the candidate cause C, it will appear
negatively in the resulting input sequence, and vice-versa. For a contingencyW,
the intervention function enables their auxiliary input for the counterfactual
automaton at the appropriate time point irrespective of their value, as the coun-
terfactual automaton will take care of matching the atomic propositions value
to the value in the original counterexample Γ .

4 The same reasoning can be applied to arbitrary systems by considering for contingen-
cies largest sets of outputs for which the assumption holds, with the caveat that the
counterfactual automaton may model fewer contingencies. Consequently, computed
causes may be less precise in case multiple causes appear in the counterexample.

Explaining Hyperproperty Violations 9

4.1 Actual Causality for HyperLTL Violations

We are now ready to formalize what constitutes an actual cause for the violation
of a hyperproperty described by a HyperLTL formula.

Definition 6 (Actual Causality for HyperLTL). Let Γ be a counterexam-
ple to a HyperLTL formula ϕ in a system T . The set C is an actual cause for
the violation of ϕ on Γ if the following conditions hold.

SAT Γ � C.
CF There exists a contingency W and a non-empty subset C′ ⊆ C such that:

Γ �W and intervene(Γ, C′,W) �traces(T) ϕ.
MIN C is minimal, i.e., no subset of C satisfies SAT and CF.

Unlike in Halpern and Pearl’s definition (see Sec. 2.2), the condition SAT
requires Γ to satisfy only the cause, as we already know that the effect ¬ϕ,
i.e., the violation of the specification, is satisfied by virtue of Γ being a coun-
terexample. CF is the counterfactual condition corresponding to AC2 in Halpern
and Pearl’s definition, and it states that after intervening on the cause, under a
certain contingency, the set of traces satisfies the property. (Note that we use a
conjunction of two statements here while Halpern and Pearl use an implication.
This is because they implicitly quantify universally over the values of the vari-
ables in the set W (which should be as in the actual world) where in our setting
the set of contingencies already defines explicit values.) MIN is the minimality
criterion directly corresponding to AC3.

Example 2. Consider our running example from Sec. 3, i.e., the system from
Fig. 1 and the counterexample to observational determinism Γ = 〈t1, t2〉. Let us
consider what it means to intervene on the cause C1 = {〈hi , 0, t2〉}. Note that
we have Γ � C1, hence the condition SAT is satisfied. For CF, let us first con-
sider an intervention without contingencies. This results in intervene(Γ, C1, ∅) =
〈t′1, t′2〉 = 〈t1, {}{hi , lo}{ho}{ho, lo}ω〉. However, intervene(Γ, C1, ∅) �traces(T)

¬ϕ, because the low outputs of t′1 and t′2 differ at the third position: lo ∈ t′1[2]
and lo 6∈ t′2[2]. This is because now the second high input takes effect, which
was preempted by the first cause in the actual counterexample. The contin-
gency W2 = {〈lo, 2, t2〉〉} now allows us to control this by modyfing the state
after taking the second high input as follows: intervene(Γ, C2,W2)) = 〈t′′1 , t′′2〉 =
〈t1, {}{hi , lo}{ho, lo}{ho, lo}ω〉. Note that t′′2 is not a trace of the model depicted
in Fig. 1, because there is no transition that explains the step from t′′2 [1] to t′′2 [2].
It is, however, a trace of the counterfactual automaton TCt2 (see App. A.1), which
encodes the set of counterfactual worlds for the trace t2. The fact that we consider
executions that are not part of the original system allows us to infer that only
the first high input was an actual cause in our running example. Disregarding
contingencies, we would need to consider both high inputs as an explanation for
the violation of observational determinism, even though the second high input
had no influence. Our treatment of contingencies corresponds directly to Halpern
and Pearl’s causal models, which allow to ignore certain structural equations as
outlined in Ex. 1.

10 N. Coenen et al.

Remark: With our definitions, we strictly generalize Halpern and Pearl’s
actual causality to reactive systems modeled as Moore machines and effects ex-
pressed as HyperLTL formulas. Their structural equation models can be encoded
in a one-step Moore machine; effect specifying a Boolean combination of prim-
itive events can be encoded in the more expressive logic HyperLTL. Just like
for Halpern and Pearl, our actual causes are not unique. While there can exist
several different actual causes, the set of all actual causes is always unique. It is
also possible that no actual cause exists: If the effect occurs on all system traces,
there may be no actual cause on a given individual trace.

4.2 Finding Actual Causes with Model Checking

In this section, we consider the relationship between finding an actual cause for
the violation of a HyperLTL formula starting with a universal quantifier and
model checking of HyperLTL. We show that the problem of finding an actual
cause can be reduced to a model checking problem where the generated formula
for the model checking problem has one additional quantifier alternation. While
there might be a reduction resulting in a more efficient encoding, our current
result suggests that causality checking is the harder problem. The key idea of
our reduction is to use counterfactual automata (that encode the given coun-
terexample and the possible counterfactual traces) together with the HyperLTL
formula described in the proof to ensure the conditions SAT, CF, and MIN on
the witnesses for the model checking result.

Proposition 1. We can reduce the problem of finding an actual cause for the
violation of an HyperLTL formula starting with a universal quantifier to the
HyperLTL model checking problem with one additional quantifier alternation.

Proof. Let Γ = 〈t1, . . . tk〉 be a counterexample for the formula ∀π1 . . . ∀πk.ϕ
where ϕ is a HyperLTL formula that does not have a universal first quantifier.
We provide the proof for the case of Γ = 〈t1, t2〉 for readability reasons, but
it can be extended to any natural number k. We assume that t1, t2 have some
ω-regular representation, as otherwise the initial problem of computing causality
is not well defined. That is, we denote ti = ui(vi)

ω such that |ui · vi| = ni.
In order to find an actual cause, we need to find a pair of traces t′1, t

′
2 that are

counterfactuals for t1, t2; satisfy the property ϕ; and the changes from t1, t2 to
t′1, t

′
2 are minimal with respect to set containment. Changes in inputs between

ti and t′i in the loop part vi should reoccur in t′i repeatedly. Note that the
differences between the counterexample 〈t1, t2〉 and the witness of the model
checking problem 〈t′1, t′2〉 encode the actual cause, i.e. in case of a difference,
the cause contains the event that is present on the counterexample. To reason
about these changes, we use the counterfactual automaton TCi for each ti, which
also allows us to search for the contingency W as part of the input sequence
of TCi . Note that each TCi consists of ni copies, that indicate in which step the
automaton is with respect to ti and its loop vi. For m > |ui|, we label each state
(si,m) in TCi with the additional label Lsm,i, to indicate that the system is now

Explaining Hyperproperty Violations 11

in the loop part of ti. In addition, we add to the initial state of TCi the label
li, and we add to the initial state of the system T the label lor . The formula
ψiloop below states that the trace π begins its run from the initial state of TCi
(and thus stays in this component through the whole run), and that every time
π visits a state on the loop, the same input sequence is observed. This way we
enforce the periodic input behavior of the traces t1, t2 on t′1, t

′
2.

ψiloop(π) := li,π ∧
∧
Lsm,i

∨
A⊆I

(Lsm,i,π → (
∧
a∈A

aπ ∧
∧
a/∈A

¬aπ))

For a subset of locations N ⊆ [1, ni] and a subset of input propositions A ⊆ I
we define ψidiff [N,A](π) that states that π differs from ti in at least all events

〈la,m, ti〉 for a ∈ A,m ∈ N ; and the formula ψieq [N,A](π) that states that for
all events that are not defined by A and N , π is equal to ti.

ψidiff [N,A](π) =
∧

j∈N,a∈A

j(aπ 6↔ ati)

ψieq [N,A](π) =
∧

j /∈N,a∈I

j(aπ ↔ ati) ∧
∧

j∈[1,ni],a/∈A

j(aπ ↔ ati)

We now define the formula ψimin that states that the set of inputs (and
locations) on which trace π differs from ti is not contained in the corresponding
set for π′. We only check locations up until the length ni of ti.

ψimin(π, π′) :=
∧

N⊆[i,ni]

∧
A⊆I

((
ψidiff [N,A](π) ∧ ψieq [N,A](π)

)
→ ¬ψieq [N,A](π′)

)
Denote ϕ := Q1τ1 . . . Qnτn. ϕ

′(π1, π2) where Qi ∈ {∀,∃} and τi are trace
variables for i ∈ [1, n]. The formula ψcause described below states that the two
traces π′1 and π′2 are part of the systems TC1 , T

C
2 , and have the same loop struc-

ture as t1 and t2, and satisfy ϕ. That is, these traces can be obtained by changing
the original traces t1, t2 and avoid the violation.

ψcause(π′1, π
′
2) := ϕ′(π′1, π

′
2) ∧

∧
i=1,2

ψiloop(π′i)

Finally, ψactual described below states that the counterfactuals π′1, π
′
2 corre-

spond to a minimal change in the input events with respect to t1, t2. All other
traces that the formula reasons about start at the initial state of the original
system and thus are not affected by the counterfactual changes. We verify ψactual

against the product automaton T × TC1 × TC2 to find these traces π′i ∈ TCi that
witness the presence of a cause, counterfactual and contingency.

12 N. Coenen et al.

ψactual := ∃π′1∃π′2. ∀π′′1π′′2 . Q1τ1 . . . Qnτn. ψcause(π′1, π
′
2) ∧

∧
i=1,2

(li,π′
i
∧ li,π′′

i
)

∧
∧

i∈[1,n]

lor ,τi ∧

ψcause(π′′1 , π
′′
2)→

 ∧
i=1,2

ψimin(π′i, π
′′
i)

Then, if there exists two such traces π′1, π

′
2 in the system T × TC1 × TC2 ,

they correspond to a minimal cause for the violation. Otherwise, there are no
traces of the counterfactual automata that can be obtained from t1, t2 using
counterfactual reasoning and satisfy the formula ϕ. ut

We have shown that we can use HyperLTL model checking to find an actual
cause for the violation of a HyperLTL formula. The resulting model checking
problem has an additional quantifier alternation which suggests that identifying
actual causes is a harder problem. Therefore, we restrict ourselves to finding
actual causes for violations of universal HyperLTL formulas. This keeps the
algorithms we present in the next section practical as we start without any
quantifier alternation and need to solve a model checking problem with a single
quantifier alternation. While this restriction excludes some interesting formulas,
many can be strengthened into this fragment such that we are able to handle close
approximations (c.f. [24]). Any additional quantifier alternation from the original
formula carries over to an additional quantifier alternation in the resulting model
checking problem which in turn leads to an exponential blow-up. The scalability
of our approach is thus limited by the complexity of the model checking problem.

5 Computing Causes for Counterexamples

In this section, we describe our algorithm for finding actual causes of hyperprop-
erty violations. Our algorithm is implemented on top of MCHyper [34], a model
checker for hardware circuits and the alternation-free fragment of HyperLTL. In
case of a violation, our analysis enriches the provided counterexample with the
actual cause which can explain the reason for the violaiton to the user.

We first provide an overview of our algorithm and then discuss each step in
detail. First, we compute an over-approximation of the cause using a satisfiability
analysis over the transitions taken in the counterexample. This analysis results
in a set of candidate events C̃. As we show in Prop. 2, every actual cause C for the
violation is a subset of C̃. In addition, in Prop. 3 we show that the set C̃ satisfies
conditions SAT and CF. To ensure MIN, we search for the smallest subset C ⊆
C̃ that satisfies SAT and CF. This set C is then our minimal and therefore
actual cause. To check condition CF, we need to check the counterfactual of
each candidate cause C, and potentially also look for contingencies for C. We
separate our discussion as follows. We first discuss the calculation of the over-
approximation C̃ (Sec. 5.1), then we present the ActualCause algorithm that

Explaining Hyperproperty Violations 13

identifies a minimal subset of C̃ that is an actual cause (Sec. 5.2), and finally we
discuss in detail the calculation of contingencies (Sec. 5.3).

In the following sections, we use a reduction of the universal fragment of
HyperLTL to LTL, and the advantages of the linear translation of LTL to alter-
nating automata, as we now briefly outline.

HyperLTL to LTL. Let ϕ be a ∀n-HyperLTL formula and Γ be the counterexam-
ple. We construct an LTL formula ϕ′ from ϕ as follows [30]: atomic propositions
indexed with different trace variables are treated as different atomic proposi-
tions and trace quantifiers are eliminated. For example ∀π, π′.aπ ∧ aπ′ results
in the LTL formula aπ ∧ aπ′ . As for Γ , we use the same renaming in order to
zip all traces into a single trace, for which we assume the finite representation
t′′ = u′′ · (v′′)ω, which is also the structure of the model checker’s output. The
trace t′′ is a violation of the formula ϕ′, i.e., t′′ satisfies ¬ϕ′. We denote ϕ̄ := ¬ϕ′.
We can then assume, for implementation concerns, that the specification (and
its violation) is an LTL formula, and the counterexample is a single trace. Af-
ter our causal analysis, the translation back to a cause over hyperproperties
is straightforward as we maintain all information about the different traces in
the counterexample. Note that this translation works due to the synchronous
semantics of HyperLTL.

Finite Trace Model Checking Using Alternating Automata. In verifying condition
CF (that is, in computing counterfactuals and contingencies), we need to apply
finite trace model checking, as we want to check if the modified trace in hand
still violates the specification ϕ, that is, satisfies ϕ̄. To this end, we use the lin-
ear algorithm of [35], that exploits the linear translation of ϕ̄ to an alternating
automaton Aϕ̄, and using backwards analysis checks the satisfaction of the for-
mula. An alternating automaton [67] generalizes non-deterministic and universal
automata, and its transition relation is a Boolean function over the states. The
run of alternating automaton is then a tree run that captures the conjunctions
in the formula. We use the algorithm of [35] as a black box (see App. A.2 for a
formal definition of alternating automata and App. A.3 for the translation from
LTL to alternating automata). For the computation of contingencies we use an
additional feature of the algorithm of [35] – the algorithm returns an accepting
run tree T of Aϕ̄ on t′′, with annotations of nodes that represent atomic sub-
formulas of ϕ̄ that take part in the satisfaction of ϕ̄. We use this feature also in
Sec. 5.1 when calculating the set of candidate causes.

5.1 Computing the Set of Candidate Causes

The events that might have been a part of the cause to the violation are in
fact all events that appear on the counterexample, or, equivalently, all events
that appear in u′′ and v′′. Note that due to the finite representation, this is
a finite set of events. Yet, not all events in this set can cause the violation.
In order to remove events that could not have been a part of the cause, we
perform an analysis of the transitions of the system taken during the execution
of t′′. With this analysis we detect which events appearing in the trace locally

14 N. Coenen et al.

cause the respective transitions, and thus might be part of the global cause.
Events that did not trigger a transition in this specific trace cannot be a part
of the cause. Note that causing a transition and being an actual cause are two
different notions - actual causality is defined over the behaviour of the system,
not on individual traces. We denote the over-approximation of the cause as C̃.
Formally, we represent each transition as a Boolean function over inputs and
states. Let δn denote the formula representing the transition of the system taken
when reading t′′[n], and let ca,n,i be a Boolean variable that corresponds to the
event 〈ati , n, t′′〉.5 Denote ψtn =

∧
ati∈t′′[n] ca,n,i ∧

∧
ati /∈t′′[n] ¬ca,n,i, that is, ψtn

expresses the exact set of events in t′′[n]. In order to find events that might
trigger the transition δn, we check for the unsatisfiable core of ψn = (¬δn)∧ψtn.
Intuitively, the unsatisfiable core of ψn is the set of events that force the system
to take this specific transition. For every ca,n,i (or ¬ca,n,i) in the unsatisfiable

core that is also a part of ψtn, we add 〈a, n, ti〉 (or 〈¬a, n, ti〉) to C̃.
We use unsatisfiable cores in order to find input events that are necessary in

order to take a transition. However, this might not be enough. There are cases
in which inputs that appear in formula ϕ̄ are not detected using this method,
as they are not essential in order to take a transition; however, they might be
considered a part of the actual cause, as negating them can avoid the violation.
Therefore, as a second step, we apply the algorithm of [35] on the annotated
automaton Aϕ̄ in order to find the specific events that affect the satisfaction of

ϕ̄, and we add these events to C̃. Then, the unsatisfiable core approach provides
us with inputs that affect the computation and might cause the violation even
though they do not appear on the formula itself; while the alternating automaton
allows us to find inputs that are not essential for the computation, but might
still be a part of the cause as they appear on the formula.

Proposition 2. The set C̃ is indeed an over-approximation of the cause for the
violation. That is, every actual cause C for the violation is a subset of C̃.

Proof (sketch). Let e = 〈la, n, t〉 be an event such that e is not in the unsatisfiable
core of ψn and does not directly affect the satisfaction of ϕ̄ according to the
alternating automata analysis. That is, the transition corresponding to ψtn is
taken regardless of e, and thus all future events on t remain the same regardless
of the valuation of e. In addition, the valuation of the formula ϕ̄ is the same
regardless of e, since: (1) e does not directly affect the satisfaction of ϕ̄; (2) e
does not affect future events on t (and obviously it does not affect past events).
Therefore, every set C′ such that e ∈ C′ is not minimal, and does not form a
cause. Since the above is true for all events e 6∈ C, it holds that C ⊆ C̃ for every
actual cause C. ut

Proposition 3. The set C̃ satisfies conditions SAT and CF.

Proof. The condition SAT is satisfied as we add to C̃ only events that indeed
occur on the counterexample trace. For CF, consider that C̃ is a super-set of the

5 That is, ¬ca,n,i corresponds to the event 〈¬ati , n, t′′〉. Recall that the atomic propo-
sitions on the zipped trace t′′ are annotated with the original trace ti from Γ .

Explaining Hyperproperty Violations 15

Algorithm 1: ActualCause(ϕ, Γ, C̃)
Input: Hyperproperty ϕ, counterexample Γ violating ϕ, and a set of

candidate causes C̃ for which conditions SAT and CF hold.
Output: A set of input events C which is an actual cause for the violation.

1 for i ∈ [1, . . . , |C̃| − 1] do

2 for C ⊂ C̃ with |C| = i do

3 let Γ f = intervene(Γ, C, ∅);
4 if Γ f � ϕ then
5 return C;
6 else

7 W̃ = ComputeContingency(ϕ, Γ, C);
8 if W̃ 6= ∅ then
9 return C;

10 return C̃;

actual cause C, so the same contingency and counterfactual of C will also apply
for C̃. This is since in order to compute counterfactual we are allowed to flip any
subset of the events in C, and any such subset is also a subset of C̃. In addition, in
computing contingencies, we are allowed to flip any subset of outputs as long as
they agree with the counterexample trace, which is independent in C̃ and C. ut

5.2 Checking Actual Causality

Due to Prop. 2 we know that in order to find an actual cause, we only need to
consider subsets of C̃ as candidate causes. In addition, since C̃ satisfies condition
SAT, so do all of its subsets. We thus only need to check conditions CF and
MIN for subsets of C̃. Our actual causality computation, presented in Alg. 1 is
as follows. We start with the set C̃, that satisfies SAT and CF. We then check
if there exists a more minimal cause that satisfies CF. This is done by iterating
over all subsets C′ of C̃, ordered by size and starting with the smallest ones, and
checking if the counterfactual for the C′ manages to avoid the violation; and
if not, if there exists a contingency for this C′. If the answer to one of these
questions is yes, then C′ is a minimal cause that satisfies SAT, CF, and MIN,
and thus we return C′ as our actual cause. We now elaborate on CF and MIN.

CF. As we have mentioned above, checking condition CF is done in two stages –
checking for counterfactuals and computing contingencies. We first show that we
do not need to consider all possible counterfactuals, but only one counterfactual
for each candidate cause.

Proposition 4. In order to check if a candidate cause C̃ is an actual cause it
is enough to test the one counterfactual where all the events in C̃ are flipped.

Proof. Assume that there is a strict subset C of C̃ such that we only need to flip
the valuations of events in C in order to find a counterfactual or contingency,
thus C satisfies CF. Since C is a more minimal cause than C̃, we will find it during
the minimality check. ut

16 N. Coenen et al.

Algorithm 2: ComputeContingency(ϕ, Γ, C)
Input: Hyperproperty ϕ, a counterexample Γ and a potential cause C.
Output: a set of output events W which is a contingency for ϕ, Γ and C, or ∅

if no contingency found.
1 let t′′ be the zipped trace of Γ ,ϕ′ be the LTL formula obtained from ϕ, and

ϕ̄ = ¬ϕ′;
2 let Aϕ̄ be the alternating automaton for ϕ̄;

3 let tf be the counterfactual trace obtained from t′′ by flipping all events in C;
4 let N be the sets of events derived from the annotated run tree of Aϕ̄ on tf ;

5 let O′ := {〈lat , n, t
′′〉 ∈ OE | at ∈ t′′[n]↔ at /∈ tf [n]};

6 for every subset W ′ ⊆ (N ∩O′), and then for every other subset W ′ ⊆ O′ do
7 tm := intervene(t′′, C,W ′);
8 if tm � ϕ′ then
9 return W ′;

10 return ∅;

We assume that CF holds for the input set C̃ and check if it holds for any
smaller subset C ⊂ C̃. CF holds for C if (1) flipping all events in C is enough to
avoid the violation of ϕ or if (2) there exists a non-empty set of contingencies
for C that ensures that ϕ is not violated. The computation of contingencies
is described in Alg. 2. Verifying condition CF involves model checking traces
against an LTL formula, as we check in Alg. 1 (line 3) if the property ϕ is still
violated on the counterfactual trace with the empty contingency, and on the
counterfactual traces resulting from the different contingency sets we consider
in Alg. 2 (line 7). In both scenarios, we apply finite trace model checking, as
described at the beginning of Sec. 5 (as we assume a lasso-shaped representation
of our traces).

MIN. To check if C̃ is minimal, we need to check if there exists a subset of C̃
that satisfies CF. We check CF for all subsets, starting with the smallest one,
and report the first subset that satisfies CF as our actual cause. (Note that we
already established that C̃ and all of its subsets satisfy SAT.)

5.3 Computing Contingencies

Recall that the role of contingencies is to eliminate the effect of other possible
causes from the counterfactual world, in case these causes did not affect the
violation in the actual world. More formally, in computing contingencies we look
for a setW of output events such that changing these outputs from their value in
the counterfactual to their value in the counterexample t′′ results in avoiding the
violation. Note that the inputs remain as they are in the counterfactual. We note
that the problem of finding contingencies is hard, and in general is equivalent
to the problem of model checking. This is since we need to consider all traces
that are the result of changing some subset of events (output + time step) from
the counterfactual back to the counterexample, and to check if there exists a

Explaining Hyperproperty Violations 17

trace in this set that avoids the violation. Unfortunately, we are unable to avoid
an exponential complexity in the size of the original system, in the worst case.
However, our experiments show that in practice, most cases do not require the
use of contingencies.

Our algorithm for computing contingencies (Alg. 2) works as follows. Let
tf be the counterfactual trace. As a first step, we use the annotated run tree
T of the alternating automaton Aϕ̄ on tf to detect output events that appear
in ϕ̄ and take part in satisfying ϕ̄. Subsets of these output events are our first
candidates for contingencies as they are directly related to the violation (Alg. 2
lines 4-9). If we were not able to find a contingency, we continue to check all
possible subsets of output events that differ from the original counterexample
trace. We test the different outputs by feeding the Counterfactual automaton
of Def. 4 with additional inputs from the set IC . The resulted trace is then our
candidate contingency, which we try to verify against ϕ. The number of different
input sequences is bounded by the size of the product of the Counterfactual
automaton and the automaton for ϕ̄, and thus the process terminates.

Theorem 1 (Correctness). Our algorithm is sound and complete. That is, let
Γ be a counterexample with a finite representation to a ∀n-HyperLTL formula
ψ. Then, our algorithm returns an actual cause for the violation, if such exists.

Proof. Soundness. Since we verify each candidate set of inputs according to
the conditions SAT, CF and MIN, it holds that every output of our algorithm
is indeed an actual cause. Completeness. If there exists a cause, then due to
Prop. 2, it is a subset of the finite set C̃. Since in the worst case we test every
subset of C̃, if there exists a cause we will eventually find it. ut

6 Implementation and Experiments

We implemented Alg. 1 and evaluated it on publicly available example instances
of HyperVis [47], for which their state graphs were available. In the following, we
provide implementation details, report on the running time and show the useful-
ness of the implementation by comparing to the highlighting output of HyperVis.
Our implementation is written in Python and uses py-aiger [68] and Spot [26].
We compute the candidate cause according to Sec. 5.1 with py-sat [49], using
Glucose 4 [3,65], building on Minisat [65]. We ran experiments on a MacBook
Pro with a 3, 3 GHz Dual-Core Intel Core i7 processor and 16 GB RAM6.

Experimental results. The results of our experimental evaluation can be found in
Tab. 1. We report on the size of the analyzed counterexample |Γ |, the size of the
violated formula |ϕ|, how long it took to compute the first, over-approximated
cause (see time(C̃)) and state the approximation C̃ itself, the number of computed
minimal causes #(C) and the time it took to compute all of them (see time(∀C)).
The Running Example is described in Sec. 3, the instance Security in & out

6 Our prototype implementation and the experimental data are both available at:
https://github.com/reactive-systems/explaining-hyperproperty-violations

https://github.com/reactive-systems/explaining-hyperproperty-violations

18 N. Coenen et al.

Table 1: Experimental results of our implementation. Times are given in ms.

Instance |Γ | |ϕ| time(C̃) C̃ #(C) time(∀C)

Running example 10 9 19 ¬hi0t1
, hi0t2

2 55
Security in & out 35 19 292 hi2t1

,¬hi0t1
,¬hi3t1

,¬hi1t1
8 798

hi2t2
, hi0t2

, hi1t2
, hi3t2

Drone example 1 24 19 33 bound2t1
,¬bound1t1

, up1t1
,¬up2t1

5 367
bound2t2

,¬bound1t2
,¬up1t2

Drone example 2 18 36 31 bound1t1
,¬bound1t2

, up1t2
3 256

Asymmetric arbiter ’19 28 35 53 see Appendix A.4 10 490
Asymmetric arbiter 72 35 70 see Appendix A.4 24 1480

refers to a system which leaks high security input by not satisfying a noninter-
ference property, the Drone examples consider a leader-follower drone scenario,
and the Asymmetric Arbiter instances refer to arbiter implementations that do
not satisfy a symmetry constraint. Specifications can be found in App. A.5.

Our first observation is that the cause candidate C̃ can be efficiently com-
puted thanks to the iterative computation of unsatisfiable cores (Sec. 5.1). The
cause candidate provides a tight over-approximation of possible minimal causes.
As expected, the runtime for finding minimal causes increases for larger coun-
terexamples. However, as our experiments show, the overhead is manageable,
because we optimize the search for all minimal causes by only considering every
subset in C̃ instead of naively going over every combination of input events (see
Prop. 2). Compared to the computationally heavy task of model checking to get
a counterexample, our approach incurs little additional cost, which matches our
theoretical results (see Prop. 1). During our experiments, we have found that
computing the candidate C̃ first has, additionally to providing a powerful heuris-
tic, another benefit: Even when the computation of minimal causes becomes
increasingly expensive, C̃ can serve as an intermediate result for the user. By
filtering for important inputs, such as high security inputs, C̃ already gives great
insight to why the property was violated. In the asymmetric arbiter instance,
for example, the input events 〈¬tb secret , 3, t0〉 and 〈tb secret , 3, t1〉 of C̃, which
cause the violation, immediately catch the eye (c.f App. A.4).

Comparison to HyperVis. HyperVis [47] is a tool for visualizing counterexam-
ples returned from the HyperLTL model checker MCHyper [34]. It highlights the
events in the trace that it considers responsible for the violation based on the
formula and the set of traces, without considering the system model. However,
violations of many relevant security policies such as observational determinism
are not caused by events whose atomic propositions appear in the formula, as
can be seen in our running example (see Sec. 3 and Ex. 2). When running the
highlight function of HyperVis for the counterexample traces t1, t2 on Running

example, the output events 〈lo, 1, t1〉 and 〈¬lo, 1, t2〉 will be highlighted, neglect-
ing the decisive high security input hi. Using our method additionally reveals
the input events 〈¬hi, 0, t1〉 and 〈hi, 0, t2〉, i.e., an actual cause (see Tab. 1). This

Explaining Hyperproperty Violations 19

pattern can be observed throughout all considered instances in our experiments.
For instance in the Asymmetric arbiter instance mentioned above, the input
events causing the violation also do not occur in the formula (see App. A.5) and
thus HyperVis does not highlight this important cause for the violation.

7 Related Work

With the introduction of HyperLTL and HyperCTL∗ [20], temporal hyper-
properties have been studied extensively: satisfiability [28,37,59], model check-
ing [34,48,33], program repair [11], monitoring [31,10,66,2], synthesis [29], and ex-
pressiveness studies [22,52,36]. Causal analysis of hyperproperties has been stud-
ied theoretically based on counterfactual builders [39] instead of actual causality,
as in our work. Explanation methods [4] exist for trace properties [69,5,38,40,41],
integrated in several model checkers [19,14,15]. Minimization [53] has been stud-
ied, as well as analyzing several system traces together [42,64,9]. There exists
work in explaining counterexamples for function block diagrams [50,62]. MOD-
CHK uses a causality analysis [7] returning an over-approximation, while we
provide minimal causes. Lastly, there are approaches which define actual causes
for the violation of a trace property using Event Order Logic [13,55,56].

8 Conclusion

We present an explanation method for counterexamples to hyperproperties de-
scribed by HyperLTL formulas. We lift Halpern and Pearl’s definition of actual
causality to effects described by hyperproperties and counterexamples given as
sets of traces. Like the definition that inspired us, we allow modifications of
the system dynamics in the counterfactual world through contingencies, and de-
fine these possible counterfactual behaviors in an automata-theoretic approach.
The evaluation of our prototype implementation shows that our method is prac-
tically applicable and significantly improves the state-of-the-art in explaining
counterexamples returned by a HyperLTL model checker.

References

1. Apache log4j security vulnerabilities, https://logging.apache.org/log4j/2.x/
security.html

2. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties
in hyperltl. In: CSF 2016. https://doi.org/10.1109/CSF.2016.24

3. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: IJCAI 2009. http://ijcai.org/Proceedings/09/Papers/074.pdf

4. Baier, C., Dubslaff, C., Funke, F., Jantsch, S., Majumdar, R., Piribauer, J., Ziemek,
R.: From Verification to Causality-Based Explications. In: ICALP 2021

5. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. In: POPL 2003. https://doi.org/10.1145/604131.604140

https://logging.apache.org/log4j/2.x/security.html
https://logging.apache.org/log4j/2.x/security.html
https://doi.org/10.1109/CSF.2016.24
http://ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.1145/604131.604140

20 N. Coenen et al.

6. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011)

7. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counterex-
amples using causality. In: Computer Aided Verification, CAV 2009

8. Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012. Tech.
Rep. Report 07/1, Johannes Kepler University (2007)

9. Bochot, T., Virelizier, P., Waeselynck, H., Wiels, V.: Paths to property violation:
A structural approach for analyzing counter-examples. In: HASE 2010

10. Bonakdarpour, B., Finkbeiner, B.: The complexity of monitoring hyperproperties.
In: CSF 2018. https://doi.org/10.1109/CSF.2018.00019

11. Bonakdarpour, B., Finkbeiner, B.: Program repair for hyperproperties. In: ATVA
2019. https://doi.org/10.1007/978-3-030-31784-3 25

12. Brayton, R., Mishchenko, A.: Abc: An academic industrial-strength verification
tool. In: CAV 2010. https://doi.org/10.1007/978-3-642-14295-6 5

13. Caltais, G., Guetlein, S.L., Leue, S.: Causality for general ltl-definable properties.
In: CREST@ETAPS 2018. https://doi.org/10.4204/EPTCS.286.1

14. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. IEEE Trans. Software Eng. 30(6), 388–402 (2004)

15. Chaki, S., Groce, A., Strichman, O.: Explaining abstract counterexamples. In:
ACM SIGSOFT Fnd. of Soft. Eng. 2004. https://doi.org/10.1145/1029894.1029908

16. Chockler, H., Halpern, J.Y., Kupferman, O.: What causes a system to satisfy a
specification? ACM Trans. Comput. Log. 9(3), 20:1–20:26 (2008)

17. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. Formal Methods Syst. Des. 19(1), 7–34 (2001)

18. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Logics of Programs, Workshop, Yorktown
Heights, New York, USA, May 1981. https://doi.org/10.1007/BFb0025774

19. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS 2004. https://doi.org/10.1007/978-3-540-24730-2 15

20. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: POST 2014

21. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010). https://doi.org/10.3233/JCS-2009-0393

22. Coenen, N., Finkbeiner, B., Hahn, C., Hofmann, J.: The hierarchy of hyperlogics.
In: LICS 2019. https://doi.org/10.1109/LICS.2019.8785713

23. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:
CAV 2019. https://doi.org/10.1007/978-3-030-25540-4 7

24. D’Argenio, P.R., Barthe, G., Biewer, S., Finkbeiner, B., Hermanns, H.: Is your
software on dope? In: ESOP 2017

25. Dehnert, C., Junges, S., Katoen, J., Volk, M.: A storm is coming: A modern prob-
abilistic model checker. In: Computer Aided Verification, CAV 2017

26. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 — a framework for ltl and ω-automata manipulation. In: ATVA 2016

27. Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J., Payer, M., Weaver, N.,
Adrian, D., Paxson, V., Bailey, M., et al.: The matter of heartbleed. In: IMC 2014

28. Finkbeiner, B., Hahn, C.: Deciding hyperproperties. In: CONCUR 2016
29. Finkbeiner, B., Hahn, C., Lukert, P., Stenger, M., Tentrup, L.: Synthesis from

hyperproperties. Acta Informatica 57(1-2), 137–163 (2020)
30. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Rvhyper: A runtime verification

tool for temporal hyperproperties. In: TACAS 2018

https://doi.org/10.1109/CSF.2018.00019
https://doi.org/10.1007/978-3-030-31784-3_25
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.4204/EPTCS.286.1
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1007/978-3-030-25540-4_7

Explaining Hyperproperty Violations 21

31. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
Formal Methods Syst. Des. 54(3), 336–363 (2019)

32. Finkbeiner, B., Hahn, C., Torfah, H.: Model checking quantitative hyperproperties.
In: CAV 2018. https://doi.org/10.1007/978-3-319-96145-3 8

33. Finkbeiner, B., Müller, C., Seidl, H., Zalinescu, E.: Verifying security policies in
multi-agent workflows with loops. In: CCS 2017

34. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking hyperltl
and hyperctl∗. In: CAV 2015. https://doi.org/10.1007/978-3-319-21690-4 3

35. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. For-
mal Methods Syst. Des. 24(2), 101–127 (2004)

36. Finkbeiner, B., Zimmermann, M.: The first-order logic of hyperproperties. In:
STACS 2017. https://doi.org/10.4230/LIPIcs.STACS.2017.30

37. Fortin, M., Kuijer, L.B., Totzke, P., Zimmermann, M.: HyperLTL satisfiability is
Σ1

1 -complete, HyperCTL∗ satisfiability is Σ2
1 -complete. In: MFCS 2021

38. Gößler, G., Métayer, D.L.: A general trace-based framework of logical causality.
In: FACS 2013. https://doi.org/10.1007/978-3-319-07602-7 11

39. Gössler, G., Stefani, J.: Causality analysis and fault ascription in component-based
systems. Theor. Comput. Sci. 837, 158–180 (2020)

40. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. Int. J. Softw. Tools Technol. Transf. 8(3), 229–247 (2006)

41. Groce, A., Kroening, D., Lerda, F.: Understanding counterexamples with explain.
In: CAV 2004. https://doi.org/10.1007/978-3-540-27813-9 35

42. Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In: SPIN
2003. https://doi.org/10.1007/3-540-44829-2 8

43. Halpern, J.Y.: A modification of the halpern-pearl definition of causality. In: IJCAI
2015. http://ijcai.org/Abstract/15/427

44. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach.
part i: Causes. The British Journal for the Philosophy of Science 56(4), 843–887
(2005), http://www.jstor.org/stable/3541870

45. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach.
part ii: Explanations. The British Journal for the Philosophy of Science 56(4),
889–911 (2005), http://www.jstor.org/stable/3541871

46. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Software Eng. 23(5), 279–
295 (1997). https://doi.org/10.1109/32.588521

47. Horak, T., Coenen, N., Metzger, N., Hahn, C., Flemisch, T., Méndez, J., Dimov, D.,
Finkbeiner, B., Dachselt, R.: Visual analysis of hyperproperties for understanding
model checking results. IEEE Trans. Vis. Comput. Graph. 28(1), 357–367 (2022)

48. Hsu, T., Sánchez, C., Bonakdarpour, B.: Bounded model checking for hyperprop-
erties. In: TACAS 2021. https://doi.org/10.1007/978-3-030-72016-2 6

49. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: A Python toolkit for proto-
typing with SAT oracles. In: SAT. pp. 428–437 (2018)

50. Jee, E., Jeon, S., Cha, S.D., Koh, K.Y., Yoo, J., Park, G., Seong, P.: Fbdverifier:
Interactive and visual analysis of counterexample in formal verification of function
block diagram. J. Res. Pract. Inf. Technol. 42(3), 171–188 (2010)

51. Kocher, P., Horn, J., Fogh, A., , Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: Ex-
ploiting speculative execution. In: SP 2019. https://doi.org/10.1109/SP.2019.00002

52. Krebs, A., Meier, A., Virtema, J., Zimmermann, M.: Team semantics for the spec-
ification and verification of hyperproperties. In: MFCS 2018

https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.1007/978-3-319-07602-7_11
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/3-540-44829-2_8
http://ijcai.org/Abstract/15/427
http://www.jstor.org/stable/3541870
http://www.jstor.org/stable/3541871
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/978-3-030-72016-2_6
https://doi.org/10.1109/SP.2019.00002

22 N. Coenen et al.

53. Lahtinen, J., Launiainen, T., Heljanko, K., Ropponen, J.: Model checking method-
ology for large systems, faults and asynchronous behaviour: SARANA 2011 work
report. No. 12 in VTT Tech., VTT Tech. Research Centre of Finland (2012)

54. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1-2) (1997), https://doi.org/10.1007/s100090050010

55. Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In:
VMCAI 2013. https://doi.org/10.1007/978-3-642-35873-9 16

56. Leitner-Fischer, F., Leue, S.: Probabilistic fault tree synthesis using causality com-
putation. Int. J. Crit. Comput. Based Syst. 4(2), 119–143 (2013)

57. Lewis, D.: Causation. Journal of Philosophy 70(17), 556–567 (1973)
58. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Horn, J., Mangard, S.,

Kocher, P., Genkin, D., Yarom, Y., Hamburg, M., Strackx, R.: Meltdown: reading
kernel memory from user space. Commun. ACM 63(6), 46–56 (2020)

59. Mascle, C., Zimmermann, M.: The keys to decidable hyperltl satisfiability: Small
models or very simple formulas. In: CSL 2020

60. McCullough, D.: Noninterference and the composability of security properties. In:
Proceedings. 1988 IEEE Symposium on Security and Privacy. pp. 177–186 (1988)

61. Moore, E.F.: Gedanken-experiments on sequential machines. Aut. stud. 34 (1956)
62. Pakonen, A., Buzhinsky, I., Vyatkin, V.: Counterexample visualization and expla-

nation for function block diagrams. In: INDIN 2018
63. Pnueli, A.: The temporal logic of programs. In: FOCS 1977
64. Schuppan, V., Biere, A.: Shortest counterexamples for symbolic model checking of

LTL with past. In: TACAS 2005. https://doi.org/10.1007/978-3-540-31980-1 32
65. Sörensson, N.: Minisat 2.2 and minisat++ 1.1. SAT Race 2010
66. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring of

hyperproperties. In: FM 2019
67. Vardi, M.Y.: Alternating automata: Unifying truth and validity checking for tem-

poral logics. In: CADE-14 (1997). https://doi.org/10.1007/3-540-63104-6 19
68. Vazquez-C., M., Rabe, M.: py-aiger, https://github.com/mvcisback/py-aiger
69. Wang, C., Yang, Z., Ivancic, F., Gupta, A.: Whodunit? causal analysis for coun-

terexamples. In: ATVA 2006. https://doi.org/10.1007/11901914 9

A Appendix

A.1 Counterfactual Automaton for Running Example

The counterfactual automaton TCt2 for system T (see Fig. 1) and the trace t2 =
{hi}{hi , ho}{ho, lo}ω from the running example (see Sec. 3) is illustrated in
Fig. 2. For readability we only pictured the reachable fragment of the automaton,
the states (s1, 0), (s2, 0) and (s3, 0) are missing. Note that following t2 can be
done in TCt2 without the contingency variables, e.g., loC . If we diverge from the
input sequence of t2, however, such as when taking an edge labeled with ¬hi in
the first step, then we can use the contingency variables to set the corresponding
value as in t2. For instance, the edge labeled with ¬hi∧ loC∧¬hoC goes to (s0, 1)
because we remove lo from the outputs of the successor state. We then proceed as
in the state with the corresponding label, i.e., s0. Automata copies in the chain
that correspond to the prefix of the trace cannot be visited twice, for instance in
TCt2 we are forced to loop in the third copy and can visit the first two only once.

https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/3-540-63104-6_19
https://github.com/mvcisback/py-aiger
https://doi.org/10.1007/11901914_9

Explaining Hyperproperty Violations 23

s0, 0
∅

s0, 1
∅

s1.1
{ho}

s2.1
{lo}

s3, 1
{ho, lo}

s0, 2
∅

s1.2
{ho}

s2.2
{lo}

s3, 2
{ho, lo}

hi

¬hi ∧ loC ∧ ¬hoC ¬hi ∧ hoC

¬hi ∧ ¬loC ∧ ¬hoC

>
>

hi ∧ ¬loC ¬hi ∨ loC

>
>

¬hi ∨ loChi ∧ ¬loC

hoC ∧ loC

¬hi ∧ ¬hoC ∧ ¬loC

hi ∧ ¬hoC ∧ ¬loC

hoC ∧ loC

¬hi ∧ ¬hoC ∧ ¬loC

hi ∧ ¬hoC ∧ ¬loC

Fig. 2: The counterfactual automaton TCt2 described in App. A.1.

24 N. Coenen et al.

A.2 Alternating Automata

Alternating automata [67] are automata over infinite words that generalize non-
deterministic and universal automata. An alternating automaton A is defined
by the following grammar

εA | 〈ν,A, f〉 | A ∧ A | A ∨ A

where εA is the empty automaton; A∧A and A∨A are a disjunction and con-
junction of two automata, respectively; and n = 〈ν,A, f〉 is a node, such that
ν is a state formula that labels n, A is the next state (automaton), and f indi-
cates whether n is accepting or rejecting (acc/rec). Since runs of an alternating
automaton are defined using conjunctions, they form a run tree (see [67] for a
formal definition), where disjunctions express non-determinism. The set of words
accepted (using Büchi acceptance condition) by an alternating automaton are
those who have a run such that all of its branches in the tree visit infinitely often
in an accepting state. The language L(A) of an automaton A is the set of words
accepted by A.

The set of nodes of an alternating automaton A is denoted by N (A), where
N (εA) = ∅, N (〈ν,A, f〉) = N (A), and N (A∧A′) = N (A∨A′) = N (A)∪N (A′).
For an LTL formula ϕ there is a linear translation to an alternating automaton
Aϕ, s.t. L(Aϕ) is the set of traces that satisfy ϕ [67]. In this construction, N (A)
is the set of subformulas of ϕ and their negations, A is ϕ, and all formulas of
the form ¬(ϕ1 U ϕ2) are accepting.

A.3 LTL to Alternating Automata

For LTL formulas ϕ and ϕ′ and a ∈ AP

A(a) = 〈a, εA, acc〉
A(¬a) = 〈¬a, εA, acc〉

A(ϕ ∧ ϕ′) = A(ϕ) ∧ A(ϕ′)

A(ϕ ∨ ϕ′) = A(ϕ) ∨ A(ϕ′)

A(ϕ) = 〈true,A(ϕ), rej 〉
A(ϕ) = 〈true,A(ϕ), acc〉 ∧ A(ϕ)

A(ϕ) = 〈true,A(ϕ), rej 〉 ∧ A(ϕ)

A(ϕU ϕ′) = A(ϕ′) ∨ (〈true,A(ϕU ϕ′), rej 〉 ∧ A(ϕ))

A(ϕRϕ′) = (A(ϕ) ∧ A(ϕ′)) ∨ (〈true,A(ϕRϕ′), acc〉 ∧ A(ϕ′))

A.4 Cause Candidates for Asymmetric Arbiter

In the following, we provide the cause candidates C̃, which are given as an in-
termediate output of our implementation for both asymmetric arbiter instances.
Especially in the Asymmetric arbiter instance, that tb secret does not hold

Explaining Hyperproperty Violations 25

on timestep 3 on trace t1, but does hold on timestep 3 on trace t2 immediately
catches the eye. The events are given as a tuple of the valuation of an input and
its timestep, sorted by their trace belonging.
C̃ for Asymmetric arbiter:

T1 : [(! req 1 , 6) , (! req 0 , 1) , (req 1 , 0) , (req 0 , 0) ,
(req 0 , 5) , (req 1 , 4) , (! req 1 , 2) , (! req 0 , 2) ,
(! t b s e c r e t , 3) , (req 0 , 3) , (req 1 ’ , 3)]

T2 : [(! req 0 , 4) , (! req 0 , 1) , (req 1 , 0) , (req 0 , 0) ,
(! req 0 , 6) , (! req 1 , 6) , (req 0 , 5) , (req 1 , 5) ,
(req 0 , 3) , (t b s e c r e t , 3) , (req 1 , 3) , (! req 1 , 2) ,
(! req 0 , 2)]

C̃ for Asymmetric arbiter ’19:

T1 : [(! req0 , 1) , (req0 , 0) , (req1 , 0) , (! req0 , 2) ,
(! req1 , 2)]

T2 : [(! req0 ’ , 1) , (req0 , 0) , (req1 , 0) , (! req0 , 2) ,
(! req1 , 2)]

A.5 Specifications for Experimental Results

We used the following HyperLTL specifications given in MCHyper syntax on the
respective benchmarks.
Running Example:

F o r a l l (F o r a l l (G (Eq (AP \” l o \” 0) (AP \” l o \” 1))))

Security in & out:

F o r a l l (F o r a l l (Imp l i e s (G (Eq (AP \” l i \” 0) (AP \” l i \”
1))) (G (Eq (AP \” l o \” 0) (AP \” l o \” 1)))))

Drone example 1:

F o r a l l (F o r a l l (X (G (Imp l i e s (Eq (AP \”bound\” 0) (AP
\”bound\” 1)) (X (Eq (AP \” emergency\” 0) (AP
\” emergency\” 1)))))))

Drone example 2:

F o r a l l (F o r a l l (Or (G (Eq (AP \” i n c r e a s e \” 0) (AP
\” i n c r e a s e \” 1))) (Unt i l (Eq (AP \” i n c r e a s e \” 0) (AP
\” i n c r e a s e \” 1)) (And (Eq (AP \” i n c r e a s e \” 0) (AP
\” i n c r e a s e \” 1)) (Neq (AP \”up\” 0) (AP \”up\” 1))))))

Asymmetric arbiter ’19:

F o r a l l (F o r a l l (Imp l i e s (G (And (Eq (AP \” req0 \” 0) (AP
\” req1 \” 1)) (Eq (AP \” req1 \” 0) (AP \” req0 \” 1))))
(G (And (Eq (AP \” grant0 \” 0) (AP \” grant1 \” 1)) (Eq
(AP \” grant1 \” 0) (AP \” grant0 \” 1))))))

26 N. Coenen et al.

Asymmetric arbiter:

F o r a l l (F o r a l l (Imp l i e s (G (And (Eq (AP \” req 0 \” 0) (AP
\” req 0 \” 1)) (Eq (AP \” req 1 \” 0) (AP \” req 1 \”
1)))) (G (And (Eq (AP \” grant 0 \” 0) (AP \” grant 0 \”
1)) (Eq (AP \” grant 1 \” 0) (AP \” grant 1 \” 1))))))

	Explaining Hyperproperty Violations

