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Discovering Surfaces for the Projection 
of Adaptive Content

 

Abstract 
Ubiquitous projection or "display everywhere" is a 
popular paradigm, according to which regular rooms 
are augmented with projected digital content in order 
to create immersive interactive environments. In this 
work, we revisit this concept, where instead of consid-
ering every physical surface and object as a display, we 
seek to determine areas that are suitable for the pro-
jection and interaction with digital information. After 
determining a set of requirements that such surfaces 
need to fulfil, we describe a novel computer vision-
based technique to automatically detect rectangular 
surface regions that are deemed adequate for projec-
tion and mark those areas as available placeholders for 
users to use as "clean" displays. As a proof of concept, 
we show how content can be adaptively laid out in 
those placeholders using a simple tablet UI. 
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Figure 1: Concept image of our 
vision of a context-aware, adap-
tive and interactive projection 
system for non-instrumented 
rooms. Users can project and 
interact with their content on 
suitable projection surfaces of the 
environment (here walls and 
cupboard surfaces) as detected 
by the system. 

 

 

Figure 2: Demonstration tablet UI 
to drag and drop content into 
placeholders detected by our 
system (black frames on a blue 
background space). 



 

Introduction 
In 1998 Raskar et al. described a vision of an office of 
the future, where room surfaces and objects are aug-
mented by projected content to create spatially immer-
sive displays [18]. Cameras and computer vision tech-
niques are used to acquire the properties of those sur-
faces and adapt the projection of blended digital con-
tent to the physical environment. Over the years, this 
concept of ubiquitous or pervasive displays through 
projection has been refined within paradigms such as 
the luminous room [25], ambient projection [22], and 
surface everywhere [26], and several technical imple-
mentations have been realised [12, 13, 17, 26, 27]. As 
those metaphors explicitly state or imply, all surfaces 
and objects are considered suitable projection targets, 
provided adequate corrective techniques are employed 
to compensate for various conditions that affect the 
quality of the projection (surface obliqueness and 
shape, radiometric disparities, shadows, user position 
etc.) [2]. While "projection everywhere" infrastructures 
are suitable for the creation of immersive CAVE-like 
environments [7] and digitally augmented rooms, they 
are presumably less adequate in more traditional office 
and meeting contexts, where information-based media 
such as presentations and documents need to be dis-
played. In order to remain clear and understandable to 
audiences, this type of content is best projected on flat 
and uniformly white or pale surfaces. Meeting rooms 
are, of course, usually equipped with projectors and 
screens for that purpose, but often there are also other 
acceptable surfaces, such as surrounding walls, furni-
ture, and doors, that could possibly be used to extend 
the available projection space. Furthermore, many such 
surfaces may also exist in non-equipped rooms, such as 
regular offices, lounges, break rooms, etc. While there 
are a few works that have looked at detecting and ex-

cluding portions of surfaces that are unfit for projection 
(mainly because of occluding objects) [6, 21], they 
used RGB cameras and considered only single flat sur-
faces in relatively narrow contexts. For example, Cot-
ting and Gross [6] present a clutter-detection technique 
that relies on a focused structured light approach and 
Gabor filters. Their system can only detect sharp depth 
discontinuities and thus is unable to recognise lightly 
curved or multiple oblique flat surfaces in a full 3D 
environment such as a room. More recently, Ens et al. 
proposed a constraint-based layout manager to display 
windows in the user's 3D environment seen through a 
head-worn display [8]. While their technique does in-
volve finding multiple planar surfaces to display content 
on them, projectionability is not considered at all. In 
particular, they do not capture essential surface proper-
ties for projection of presentational content. 

Regarding the content to be projected and how it is 
manipulated by users, prior work has mainly focused on 
gestural interactions to transfer items from one display 
or surface to another [3, 19, 26]. Fine-grained content-
based (as opposed to pixel-based) adaptation of the 
projected material to the target surfaces and how that 
adaptation can be intuitively guided by the user, how-
ever, have not been addressed so far. 

In this work, we present an adaptive projection concept 
based on surfaces that are considered suitable for the 
projection of and interaction with digital content. Our 
overall concept essentially encompasses three main 
components: detection, interaction, and adaptation. 
Specifically: detection of adequate projection surfaces, 
interaction with those surfaces and the content to be 
displayed, and context-aware adaptation of the individ-
ual data elements to the projection areas. Based on this 

 

 

 

Figure 3: Results for the test 
input image in Figure 4. 
Top: Binary prediction after 
thresholding the RDF output.  
Centre: RANSAC output, showing 
two detected planes (red and 
green). 
Bottom: Binary projector mask. 

 



 

concept and its requirements, we contribute a procam-
based technique to detect flat rectangular areas of a 
room's surfaces within which content elements can be 
placed. Our implementation further includes demon-
strations of content adaptation to the geometry of the 
identified frames. Full automatic adaptation and sup-
port for natural user interaction are left for future work. 

Smart Ubiquitous Projection 
We introduce our concept using the example of a meet-
ing, where a group of people wish to view and share 
digital content in a non-instrumented room (i.e. without 
pre-installed projectors or large displays). The meeting 
attendees carry mobile procams, i.e. devices combining 
projectors and depth cameras [1], which, when correct-
ly placed in the room, can be combined to fully capture 
the surrounding environment and project their content 
on its surfaces (Figure 1). Instead of projecting every-
where, the devices can automatically detect which are-
as on those surfaces are suitable for projection and 
indicate them to users by means of projected frames. 
What "suitable" means depends on several physical and 
contextual factors. We identify the following require-
ments that detected rectangular surfaces have to fulfil 
to qualify as valid content frames or placeholders: 

R1: The surfaces should be large, flat, non-reflective, 
and have a mostly uniform pale colour. If desired, their 
size should further be required to exceed a certain 
threshold, for instance, to be able to accept content 
with fixed aspect ratios such as images and videos. 

R2: The surfaces should be comfortably visible from the 
users' perspective, i.e. they should be unoccluded, not 
within shadow zones and not too oblique from their 
viewing angle. The latter condition implies that the 
system is able to detect the users' location in the room. 

R3: It should be possible to easily split and merge 
neighbouring frames located on the same plane. In 
general, users should be able to modify the results of 
the detection process to suit their needs. 

R4: Since people can move and projection conditions in 
the room can change, the detection process is ideally 
dynamic, that is, the system is able to react to varia-
tions and propose new projection areas based on the 
changed settings (thereby possibly also dealing with 
glare and shadow issues [23]). 

 
As a first step towards realising our concept, we pro-
pose the following technique that detects projection 
frames, satisfying requirements R1 fully, R2 partially 
(our current system does not track users, thus it uses 
the device perspective to calculate the viewing angle) 
and lays the foundation for R3. The full realisation of all 
requirements will be carried out in future work. 

Projection Surface Detection 
Our approach to detect projection surfaces essentially 
consists of the following three steps: (I) In a training 
phase, a Random Forest model is trained with RGB-D 
(colour + depth) data captured by a depth camera in 
multiple sample rooms where pixels are manually la-
belled projectable or non-projectable. Upon test-time 
deployment, this model is used to classify pixels ob-
tained in the target room or environment. (II) A RAN-
SAC algorithm is used to detect all planes in the 3D 
point cloud that have a significant number of inliers. 
(III) Finally, a rectangle-fitting algorithm determines 
the largest rectangles inscribed in each of those planes. 
Those rectangles constitute the frames or placeholders 
into which digital content can be inserted. 

 

 

Figure 4: Two test outputs of the 
rectangle-fitting algorithm (the 
upper image is the result of the 
scene of Figure 3). In both imag-
es two planes were detected, 
each containing several projecta-
ble frames. Note that the trans-
formation to projector coordi-
nates is not applied and the 
results are shown from the per-
spective of the depth camera 
instead. 

 



 

We now describe each processing step in more detail. 

Random Forest 
We take randomised decision forests (RDF) [5] as clas-
sifiers, which operate on the pixels of an RGB-D image. 
Prior work has shown the power of RDFs as useful clas-
sifiers for image data [4, 14, 15]. Here, we utilise ex-
tremely randomised trees [10]. An RDF is an ensemble 
classifier that consists of T decision trees [20]. In the 
training phase the tree aims at selecting the optimal 
binary feature tests di for each internal split node, 
based on a pool of feature tests (the feature pool is 
described in the experimental section further below).  

At training time, the complete training data is pushed 
through the forest, which results in a 2-class distribu-
tion P(xi), where xi ∈ {projectable, non-projectable} at 
each leaf. At test-time, the final output distribution for 
an individual pixel is computed by averaging the indi-
vidual distributions P(xi) from each tree. Note that, for 
training, instead of using hand-crafting decision rules, 
the classifier learns directly from manually labelled 
training data what image elements are projectable. This 
has the flexibility that, e.g. at later stage of our system 
development, coloured surfaces can be added to the 
system by adding labels to the training data and re-
training the forest. 

To summarise, the output of the random forest is a 
probability map which describes the "projectability" of 
each pixel i. A threshold is applied to this probability 
map to obtain a binary mask which classifies each pixel 
as projectable/non-projectable, as illustrated in Figure 
3 (top). This classification directly addresses the colour, 
reflectance and surface texture requirements of R1. 

RANSAC Plane Detection 
The RANSAC (RANdom SAmple Consensus) algorithm 
[9] selects three random points to define a plane and 
computes its inliers based on a threshold. RANSAC runs 
iteratively to find the plane with the maximum number 
of inliers. The algorithm operates on the 3D point data 
captured by the depth camera to find all the planes 
containing significant numbers of inliers. A single exe-
cution of RANSAC finds the largest plane. The found 
inliers are then removed from the set of all points, fol-
lowing which RANSAC is re-executed to obtain the sec-
ond largest plane and so on. This addresses the flat 
surface requirement of R1. 

For every plane, a mask that describes which pixels in 
the RGB camera image correspond to the plane is com-
puted (see Figure 3 centre for a combined visualisa-
tion). Theses masks are joined with the mask from the 
RDF (Figure 3 top) as well as a projector mask (Figure 
3 bottom) through a Boolean AND-operation. The pro-
jector mask provides information about the bounds of 
the projection area and occluding elements. It is com-
puted by thresholding the difference image of a fully 
black and a fully white projection. Finally, the masks 
are post-processed with morphological operations to 
remove outliers and to close regions. 

Rectangle Fitting 
In the final step, for each mask representing a 3D 
plane, 2D rectangles are identified in the 3D plane. The 
procedure to achieve this is as follows: 

1. Find the contour of the mask, i.e. an ordered list of 
pixels which belong to its edge. 

2. Find the 3D points corresponding to the polygon of 
the mask. Because the depth values are available at 

 

 

 

Figure 5: Projectable regions 
detected by our system on sur-
faces with different obstacle 
arrangements (the blue back-
ground shows the entire projec-
tion space). 

 



 

each pixel, the 2D image points can be cast into 3D, 
which leads to a set of 3D polygons per mask, describ-
ing its regions. 

3. Transform the polygons to be “front-to-parallel” 
looking, i.e. as they are seen by a camera that faces 
the plane from the front. To this end, we compute the 
appropriate rotation and translation of the 3D polygon. 
The translation is the centroid of the 3D polygon and 
the rotation is computed from the normal of the plane, 
and the Up Vector of the "Real World" (i.e., if the cam-
era is standing flat on the ground [0,1,0]T). 

4. Project the polygon to 2D and generate an image. 

5. On the generated image, iteratively find the largest 
rectangles, defined by area, using Tuszynski's rectan-
gle-finding algorithm [24]. 

6. Project the discovered rectangles back to 3D using 
the inverse rotation and translation operations. 

 
The extracted rectangles and their corresponding 
planes provide us with a simple scene hierarchy and 
can serve as a technical basis to fulfil requirement R3. 
It also allows us to filter out small rectangles, address-
ing R1 or, potentially, rectangles with an oblique angle 
to the users (if the system is able to track them), which 
would address R2. Rectangle-fitting of an example test 
scene is shown in Figure 4. Further results are illustrat-
ed in Figures 2 and 5. 

Implementation 
Our algorithm was implemented in Matlab R2013b and 
integrated in a C# program. In our implementation, we 
used one procam unit consisting of a Kinect v1 and a 
full HD projector. The Kinect and the projector were 
calibrated using a standard projector-camera calibra-

tion method based on the projection and detection of 
grey-code patterns [16]. 

Dataset 
We evaluated our projection surface-detection algo-
rithm on a dataset of 150 fully annotated images fea-
turing common office interiors. Each image, apart from 
having its associated RGB and Depth matrix, also con-
sists of both an X coordinate matrix and a Y coordinate 
matrix describing the mapping between pixels and the 
Kinect’s coordinate system and a Depth-to-Colour im-
age mapping. Those data are obtained from the Kinect 
SDK. Each image is manually annotated with binary 
masks of the projectable/non-projectable area. The 
mask is created by drawing polygons covering the are-
as which are suitable for projection. Mostly, white or 
close to white surfaces that are flat and clear are la-
belled as projectable. 

Experiments 
The random forest is trained on 100 images, each con-
taining 307'200 pixels. The validation set consists of 50 
images. The random forest contains 15 trees and its 
depth is automatically determined by the criterion that 
a leaf node must have a minimum of 5000 pixels. The 
feature vector is chosen by evaluating the out-of-bag 
error (an internal error estimate of a random forest 
during construction) and calculating feature signifi-
cance. Initially nine features were used, which are red, 
green and blue components of the pixel, its hue, satu-
ration and intensity as well as its depth, relative depth 
and relative intensity. Out of all those features, we 
found that only four were significant, namely pixel hue, 
saturation, depth and relative intensity. Here, "relative" 
means that intensity is subtracted by the image-wide 

 

Figure 6: Adaptive data element 
with different chart visualisations 
based on the geometry of the 
target frames. 

 

 

Figure 7: drag-and-drop interface 
of your tablet content placement 
tool 

 



 

mean intensity. The threshold for class predictions was 
set to 0.2. 

Since the correctness of detected rectangle frames is 
subjective to human interpretation, we evaluated the 
pixel-wise classification of the random forest. The re-
sults with our dataset is a training accuracy of around 
84% and a validation accuracy of 80%. This shows that 
the forest did not over-fit to the training data. A limita-
tion of our system is that significant changes of the 
lighting conditions (e.g. turning lights on or off) can 
decrease the prediction accuracy, resulting in unsatis-
factory plane detection and rectangle fitting. In the 
future, we plan to add these challenging test cases to 
our training data and re-train the forest accordingly. 

Application 
To confirm the applicability of our technique in context, 
we developed a test application that integrates our 
implementation of the surface-detection algorithm as 
well as a tablet UI with sample content to drag and 
drop in the identified placeholders (Figures 2 and 7). To 
demonstrate how such content can be made adaptable 
to different frame geometries, we created several 
charts and content layouts in different aspect ratios 
associated with each of the sample data elements. As 
shown in Figure 6, a different chart layout or type can 
be used for a single data element depending on the 
aspect ratio of the target frame. In future versions of 
our system, content arrangement could conceivably be 
(partially or fully) automated, where both the type of 
data to be shown and the context would be taken into 
account for frame assignment or suggestion. Text, for 
instance, can be easily reformatted and adapted to 
different container geometries, whereas images or vid-
eos have fixed aspect ratios and therefore are less 

malleable. The context could exert an influence on the 
layout and adaptation process in that the distance at 
which people are sitting or standing from the projection 
surfaces could modulate the appearance of the content 
for better visibility. This particularly applies to text, 
which, depending on the viewing distance, could be 
rendered using larger font sizes to remain readable. 

Conclusion and future work 
In this paper, we presented an alternative concept to 
the "projection everywhere" paradigm, where only 
surface portions with adequate properties and locations 
with respect to users are selected for the projection of 
and interaction with digital content (e.g. during office 
meetings). We contributed a computer vision-based 
technique that detects and displays rectangular surface 
areas of a room with properties that are appropriate for 
the projection of adaptive digital content. Our imple-
mented system currently uses a single procam and 
relies on pre-defined visuals associated with data ele-
ments for adaptation. In the future, beyond refining our 
detection technique, we aim to support multiple pro-
cams and automatic content fitting with the integration 
of intuitive user interactions to allow those processes to 
be guided, especially via gestural interactions captured 
by the Kinect (see box in leftmost column). We will 
further deploy and evaluate our system in actual meet-
ings in order to validate its usability and practical bene-
fits in real conditions. 
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Gestural Interaction 
with Projectable Re-
gions and Content 
 
Since our system setup al-
ready uses a depth camera, 
the latter can also be used to 
capture hand and body ges-
tures for input to both guide 
the detection process and 
interact with the content. 

Refinement: Refinement of 
the automatically detected 
regions can be necessary to 
correct errors or reduce clut-
ter. Instead of manually ad-
justing frames with a mouse 
as in [11], we would like to 
support this process with 
intuitive arm/hand gestures.  

Content Distribution: Our 
current prototype allows us-
ers to place content in de-
tected placeholders with a 
simple touch interface (Fig-
ures 2 and 7). Using body 
interactions tracked by the 
depth camera, users could 
instead transfer content to 
and between frames, e.g. by 
pointing at desired regions 
and performing throwing or 
waving gestures. 



 

References 
1. Projector-Camera Systems workshops. Retrieved 

from http://procams.org 

2. Oliver Bimber, Daisuke Iwai, Gordon Wetzstein and 
Anselm Grundhöfer. 2008. The Visual Computing of 
Projector-Camera Systems. Computer Graphics 
Forum, 27, 8, 2219-2245. 

3. Richard A. Bolt. 1980. "Put-that-there": Voice and 
gesture at the graphics interface. In Proceedings of 
the 7th annual conference on Computer graphics 
and interactive techniques (SIGGRAPH 1980), 262-
270. 

4. Anna Bosch, Andrew Zisserman and Xavier Muñoz. 
2007. Image Classification using Random Forests 
and Ferns. In Proceedings of the 11th IEEE 
International Conference on Computer Vision (ICCV 
2007), 1-8. 

5. Leo Breiman. 2001. Random Forests. Machine 
Learning, 45, 1 (2001/10/01), 5-32. 

6. Daniel Cotting and Markus Gross. 2006. Interactive 
environment-aware display bubbles. In Proceedings 
of the 19th annual ACM symposium on User 
interface software and technology (UIST 2006), 
245-254. 

7. Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. 
DeFanti, Robert V. Kenyon and John C. Hart. 1992. 
The CAVE: audio visual experience automatic 
virtual environment. Communications of the ACM, 
35, 6, 64-72. 

8. Barrett Ens, Eyal Ofek, Neil Bruce and Pourang 
Irani. 2015. Spatial Constancy of Surface-
Embedded Layouts across Multiple Environments. 
In Proceedings of the 3rd ACM Symposium on 
Spatial User Interaction (SUI 2015), 65-68. 

9. Martin A. Fischler and Robert C. Bolles. 1981. 
Random sample consensus: a paradigm for model 
fitting with applications to image analysis and 
automated cartography. Communications of the 
ACM, 24, 6, 381-395. 

10. Pierre Geurts, Damien Ernst and Louis Wehenkel. 
2006. Extremely randomized trees. Machine 
Learning, 63, 1 (2006/04/01), 3-42. 

11. John Hardy and Jason Alexander. 2012. Toolkit 
support for interactive projected displays. In 
Proceedings of the 11th International Conference 
on Mobile and Ubiquitous Multimedia (MUM 2012), 
1-10. 

12. Brett R. Jones, Hrvoje Benko, Eyal Ofek and 
Andrew D. Wilson. 2013. IllumiRoom: peripheral 
projected illusions for interactive experiences. In 
Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (CHI 2013), 869-
878. 

13. Brett Jones, Rajinder Sodhi, Michael Murdock, 
Ravish Mehra, Hrvoje Benko, Andrew Wilson, Eyal 
Ofek, Blair MacIntyre, Nikunj Raghuvanshi and Lior 
Shapira. 2014. RoomAlive: magical experiences 
enabled by scalable, adaptive projector-camera 
units. In Proceedings of the 27th annual ACM 
symposium on User interface software and 
technology (UIST 2014), 637-644. 

14. Vincent Lepetit, Pascal Lagger and Pascal Fua. 
2005. Randomized trees for real-time keypoint 
recognition. In Proceedings of the IEEE Computer 
Society Conference on Computer Vision and Pattern 
Recognition (CVPR 2005), 775-781 vol. 772. 

15. Raphaël Marée, Pierre Geurts, Justus Piater and 
Louis Wehenkel. 2005. Random subwindows for 

http://procams.org/


 

robust image classification. In Proceedigs of the 
IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition (CVPR 2005), 34-40 
vol. 31. 

16. Daniel Moreno and Gabriel Taubin. 2012. Simple, 
Accurate, and Robust Projector-Camera Calibration. 
In Proceedings of the Second International 
Conference on 3D Imaging, Modeling, Processing, 
Visualization and Transmission (3DIMPVT 2012), 
464-471. 

17. Ramesh Raskar, Jeroen van Baar, Paul Beardsley, 
Thomas Willwacher, Srinivas Rao and Clifton 
Forlines. 2003. iLamps: geometrically aware and 
self-configuring projectors. In Proceedings of the 
30th annual conference on Computer graphics and 
interactive techniques (SIGGRAPH 2003), 809-818. 

18. Ramesh Raskar, Greg Welch, Matt Cutts, Adam 
Lake, Lev Stesin and Henry Fuchs. 1998. The office 
of the future: a unified approach to image-based 
modeling and spatially immersive displays. In 
Proceedings of the 25th annual conference on 
Computer graphics and interactive techniques 
(SIGGRAPH 1998), 179-188. 

19. Jun Rekimoto and Masanori Saitoh. 1999. 
Augmented surfaces: a spatially continuous work 
space for hybrid computing environments. In 
Proceedings of the SIGCHI conference on Human 
Factors in Computing Systems (CHI 1999), 378-
385. 

20. Jamie Shotton, Matthew Johnson and Roberto 
Cipolla. 2008. Semantic texton forests for image 
categorization and segmentation. In Proceedings of 
the IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR 2008), 1-8. 

21. Thitirat Siriborvornratanakul and Masanori 
Sugimoto. 2008. Clutter-aware dynamic projection 
system using a handheld projector. In Proceedings 
of the 10th International Conference on Control, 
Automation, Robotics and Vision (ICARCV 2008), 
1271-1276. 

22. Rahul Sukthankar. 2005. Towards Ambient 
Projection for Intelligent Environments. In 
Proceedings of Computer Vision for Interactive and 
Intelligent Environment (CVIIE 2005), 162-172. 

23. Jay Summet, Matthew Flagg, Tat-Jen Cham, James 
M. Rehg and Rahul Sukthankar. 2007. Shadow 
Elimination and Blinding Light Suppression for 
Interactive Projected Displays. IEEE Transactions 
on Visualization and Computer Graphics, 13, 3, 
508-517. 

24. Tutorial for Inscribed_Rectangle Package. (July 1, 
2010). Retrieved February 15, 2016 from 
http://www.mathworks.com/matlabcentral/fileexch
ange/28155-inscribed-
rectangle/content/html/Inscribed_Rectangle_demo.
html 

25. John Underkoffler, Brygg Ullmer and Hiroshi Ishii. 
1999. Emancipated pixels: real-world graphics in 
the luminous room. In Proceedings of the 26th 
annual conference on Computer graphics and 
interactive techniques (SIGGRAPH 1999), 385-392. 

26. Andrew D. Wilson and Hrvoje Benko. 2010. 
Combining multiple depth cameras and projectors 
for interactions on, above and between surfaces. In 
Proceedings of the 23nd annual ACM symposium on 
User interface software and technology (UIST 
2010), 273-282. 

http://www.mathworks.com/matlabcentral/fileexchange/28155-inscribed-rectangle/content/html/Inscribed_Rectangle_demo.html
http://www.mathworks.com/matlabcentral/fileexchange/28155-inscribed-rectangle/content/html/Inscribed_Rectangle_demo.html
http://www.mathworks.com/matlabcentral/fileexchange/28155-inscribed-rectangle/content/html/Inscribed_Rectangle_demo.html
http://www.mathworks.com/matlabcentral/fileexchange/28155-inscribed-rectangle/content/html/Inscribed_Rectangle_demo.html


 

27. Robert Xiao, Chris Harrison and Scott E. Hudson. 
2013. WorldKit: rapid and easy creation of ad-hoc 
interactive applications on everyday surfaces. In 
Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (CHI 2013), 879-
888. 

 


	Abstract
	Author Keywords
	ACM Classification Keywords
	Fabrice Matulic
	Wolfgang Büschel
	Michael Ying Yang
	Stephan Ihrke
	Anmol Ramraika
	Carsten Rother
	Raimund Dachselt
	Introduction
	Smart Ubiquitous Projection
	Projection Surface Detection
	Random Forest
	RANSAC Plane Detection
	Rectangle Fitting

	Implementation
	Dataset
	Experiments
	Application

	Conclusion and future work
	Acknowledgments
	Gestural Interaction with Projectable Regions and Content
	References

