

 This is an unedited preprint of Frisch and Dachselt, ñVisualizing offscreen elements of node-link diagrams” The final version of this

article can be found in Information Visualization, January 2013, doi: 10.1177/1473871612473589.

Visualizing Off -Screen Elements of Node-Link Diagrams

Mathias Frisch, Raimund Dachselt

Interactive Media Lab

Technische Universität Dresden

[mathias.frisch, raimund.dachselt]@tu-dresden.de

ABSTRACT
Visual representations of node-link diagrams are very important

for the software development process. In many situations large

diagrams have to be explored, whereby diagram elements of

interest are often clipped from the viewport and are therefore not

visible. Thus, in state-of-the-art modeling tools navigation is

accompanied by time consuming panning and zooming. One

solution to this problem are off-screen visualization techniques.

Usually, they indicate the existence and direction of clipped

elements by overlays at the border of the viewport. In this paper

we contribute the application of off-screen visualization

techniques to the domain of node-link diagrams in general and to

UML class diagrams in particular. The basic idea of our approach

is to represent off-screen nodes by proxy elements located within

an interactive border region around the viewport. The proxies

show information of the associated off-screen nodes and can be

used to quickly navigate to the respective node. Beyond that, we

contribute techniques which preserve the routing of edges during

panning and zooming and present strategies to make our approach

scalable to large diagrams. We conducted a formative pilot study

of our first prototype. Based on the observations made during the

evaluation, we came to suggestions how particular techniques

should be combined. Finally, we ran a user evaluation to compare

our technique with a traditional zoom+pan interface. The results

showed that our approach is significantly faster for exploring

relationships within diagrams than state-of-the-art interfaces. We

also found that the off-screen visualization combined with an

additional overview window did not improve the orientation

within an unknown diagram. However, an overview should be

offered as a cognitive support.

CR Categories: D.2.2 [Software Engineering]: Design Tools and

Techniques – User Interface; H.5.2 [Information Interfaces and

Presentation]: User Interfaces – Graphical User Interfaces

General Terms: Design, Human Factors

Keywords: Off-screen visualization, UML, contextual view,

interaction, node-link diagrams, navigation

1. INTRODUCTION
Visual representations of node-link diagrams play a very

important role in nearly all phases of the software development

process. They are used to design the architecture of systems, and

they are applied to understand and communicate problems [5].

Over the last 15 years the Unified Modeling Language (UML)

[28] has been established as a common standard for designing and

modeling software systems. In many situations, UML diagrams

can become large with hundreds of nodes and edges. Moreover,

within one diagram there can be different elements with a variety

of properties. During the design and development process these

diagrams have to be explored, created from scratch, and properties

have to be added or changed. In many situations these activities

are accomplished in a manual way by developers and software

designers.

In this work we focus on UML class diagrams as an application

example. Class diagrams are most widely applied [7] [39] and

feature all the aforementioned characteristics. There are different

types of nodes such as classes and interfaces and different types of

edges such as associations, generalizations and aggregations.

These elements possess a variety of properties such as labels and

multiplicities which have to be set or changed.

During the editing process users need to navigate within the

diagram. They must be able to focus on a particular node or to

move to a certain part of the diagram. Basically, navigation can

take place in two ways. On the one hand in familiar diagrams

users orient themselves in a “geographic way” similar to map

navigation. This means that they know for example the spatial

position of a class, the routing of an edge or the direction where a

particular class is located. This information is applied to perform

navigation. On the other hand knowledge about the diagram

topology and structure can be applied for navigation. For

example, users often know which nodes are connected, which

classes belong to an inheritance hierarchy or which class is at the

top of a hierarchy. The actual spatial location of diagram elements

or the concrete edge routing is less important in this case.

However, contextual information such as properties of

relationships (e.g., their types, labels or multiplicities) and types

of connected nodes must be available when navigation based on

this knowledge should be supported.

Usually, state-of-the-art modeling tools (e.g., [17] [24][40]) only

support the map navigation approach. They offer a so-called

overview+detail interface. The viewport shows details and is

navigated by manual zooming and panning. In addition, a separate

window shows the whole information space in miniature to

provide an overview [6].

Figure 1. Principle of our solution: The viewport of our UML

class diagram editor with off -screen visualization (center).

Classes clipped from the viewport (shown outside in gray) are

represented by proxy elements located within the interactive

border region.

However, for large diagrams the overview visualization becomes

very small and unreadable, which is hardly helpful. Beyond that,

when zoomed in on a particular element, other elements move off-

screen which means they are clipped from the viewport. They are

not visible anymore and can only be reached by cumbersome and

time consuming panning and zooming. For example, the class

diagram depicted in Figure 1 consists of 51 classes. Three

particular classes are zoomed in to be able to read their properties,

all others are clipped. Thus, important contextual information

such as which off-screen nodes are connected with the visible

nodes or the types of relationships leading to off-screen nodes is

not visible.

To overcome this problem, focus+context techniques have been

developed. Overview and detail views are no longer spatially

separated, but integrated into a single viewport [6]. Thereby, the

content of the focused region is displayed in detail. It is

surrounded by the context which is shown less detailed, according

to a degree of interest function (DOI) [14]. Often the context

information is distorted in a geometric way [35], for example by

applying a fisheye visualization. In that way, all information is on-

screen. However, distortion can make the access and

comprehension of the context difficult. Moreover, traditional

focus+context techniques provide li ttle or no information about

diagram structures and topologies.

In this paper (which is an extended version of our work presented

in [11]) we investigate off-screen visualization techniques for

node-link diagrams. Such techniques provide cues concerning

elements currently clipped from the viewport. They can be seen as

an alternative to traditional overview+detail or distortion oriented

focus+context techniques, but can also be combined with them.

Up to now, off-screen visualization techniques were mainly

applied to mobile devices [1][16]. However, we conceive it as a

promising technique to improve diagram navigation as well and

extend it for this domain. Our approach offers a zoomable user

interface combined with a contextual view displaying off-screen

nodes by means of proxy elements. These elements are arranged

within an interactive border region of the viewport (see Figure 1).

They offer spatial information as well as structural and topological

information about elements currently clipped (e.g., the type of

clipped nodes or the members of a hierarchy located of-screen).

Furthermore, proxy elements serve as links providing automatic

navigation to the associated off-screen node. In that way, our

technique supports both, map oriented navigation and navigation

based on the diagram structure.

In this research we contribute how off-screen visualization

techniques can be applied to node-link diagrams in general and to

UML class diagrams in particular. We discuss the respective

design space of the approach concerning visualization and

interaction techniques. More precisely, we contribute techniques

which preserve the routing of edges during panning and zooming

and present strategies to make our approach scalable for large

node-link diagrams. This comprises filtering and clustering of

proxy elements not only according to geometric rules but also to

rules based on the structure of a diagram. We implemented a

prototype for navigating and editing a selected subset of UML

class diagrams. This application was used to conduct two user

studies. In a formative pilot study we collected observations and

comments from participants. These results led to suggestions

which concrete techniques of the design space should be

combined and were used to improve our prototype. In the second

study we compared the performance of the off-screen

visualization to a state-of-the-art zoom+pan interface with

overview. The results showed that participants performed

significantly faster using our technique for given navigation tasks.

Furthermore, we found that the off-screen visualization combined

with an additional overview window did not improve the

orientation within an unknown diagram. However, our results

indicate that participants perceived an overview as a beneficial

cognitive support.

The paper is structured as follows: Section 2 presents related

work. In Section 3 we give an overview of our approach and

discuss particular challenges. After that, visualization and

interaction techniques are presented in detail in Section 4 and 5.

Section 6 describes our prototype for editing and navigating class

diagrams. The formative pilot evaluation and the comparative user

study are described in Section 7 and Section 8. Finally, we give a

conclusion and an outline of future work.

2. RELATED WORK
There are several approaches to support users in navigation tasks

for huge information spaces such as node-link diagrams. In

general, these approaches comprise zoomable user interfaces,

overview+detail and focus+context techniques. A comprehensive

overview of these kinds of interfaces is given by Cockburn et al.

[6]. In the following sections we will discuss their application to

the domain of node-link diagrams.

2.1 Overview+Detail and Zoom+Pan
The overview+detail technique combined with zoom+pan is

certainly the most established approach in state-of-the-art diagram

modeling tools such as [17][24][40]. Usually an overview is

shown in an interactive separated area at the border of the

workspace. It shows the whole diagram in miniature and uses a

viewfinder rectangle to indicate which part is currently observed

in detail. Users are able to move this viewfinder for panning or

can select a certain part of the overview to navigate to this

location in the detailed view. There are some approaches which

try to improve overview+detail techniques.

In the work of Dwyer et al. [8] a slower but high quality layout

algorithm is applied to the detailed view of the currently focused

part of the diagram. For the overview a fast but less accurate

approach is used. The authors applied their approach also to UML

class diagrams and offer semantic zooming [30] by showing

different representations of nodes according to the level of detail.

In previous work [13], we also investigated semantic zooming

techniques for UML. Thereby, we considered nested diagrams. By

zooming in a node, a nested diagram becomes visible which

describes this node in more detail. Sharp et al. [37] present several

techniques to support the interactive exploration of UML

sequence diagrams. For instance, different kinds of filters can be

applied to the overview of the diagram. The filters result in

graying out or culling certain parts. Furthermore, if a particular

message is selected in the overview, the detail view shows the

source and target object and the respective call stack.

Concerning overview+detail techniques two general problems

exist: the overview window occupies additional screen space and

some studies indicated that there may be more cognitive load, as

users have to switch between both views [6]. Beyond that,

Nekrasovski et al. [27] compared zoom+pan to focus+context for

a huge tree structure. They applied both conditions with and

without overview and found that showing an additional overview

window had no influence on the users’ performance.

Tominski et al. [45] and Moskovich et al. [25] presented

techniques called “Edge-Based Traveling” and “Link Sliding”

respectively. They focus on reducing the effort of manually

panning for navigating to adjacent nodes in graphs. To achieve

that, they apply automatic navigation along edges. With our

approach we also support automatic navigation. However, in

contrast to Tominski et al. and Moskovich et al. this is possible

between arbitrary nodes, not only between connected ones.

Furthermore, with our technique no manual mode switch is

necessary to get a preview of the target node.

2.2 Focus+Context
In contrast to overview+detail, focus+context techniques integrate

both views in one view. Thereby, elements in focus are shown at a

high level of detail and those in the context area are condensed

according to certain strategies. For example, elements beyond a

particular DOI are blended out as in Fisheye Views presented by

Furnas [14] or context elements are geometrically distorted [35].

Existing focus+context techniques can be categorized in

approaches with global distortion (distortion affects the whole

information space) and approaches with local distortion (only

some objects of the information space are distorted). Both have

been applied to node-link diagrams and graphs.

2.2.1 Global Distortion Techniques
Global geometrical fisheye views have been applied to graphs by

Sarkar et al. [35]. The focused node is magnified and all other

nodes are geometrically distorted. The authors developed two

different approaches to achieve distortion: cartesian and polar

mapping. Turetken et al. [46] and Reinhard et al. [32] seize on

this approach and apply it to visualize hierarchical nesting of

nodes. Particular nodes, e.g. of business process models and data

flow diagrams [46], can be expanded to show nested nodes of a

finer level. This technique is also applied in ShriMP [49]. Besides

fisheye techniques, ShriMP also offers semantic zooming and

multi-focus visualization. It has been applied to visualize the

structure of ontologies and programs, e.g. by means of call graphs.

Jacobs et al. [20] use a fisheye technique in conjunction with

UML object diagrams. It serves for visual debugging and

dynamically changes the levels of detail of objects according to a

DOI function.

Kagdi et al. [23] apply a focus+context approach to classes of

inheritance hierarchies in UML class diagrams. In contrast to

aforementioned works, they do not use graphical distortion.

Instead, context nodes are represented as an onion graph notation.

2.2.2 Local Distortion Techniques
Another way for graph exploration is the application of lenses [2].

Lenses can show additional information [21] or can support graph

exploration by local distortion of the layout of the graph. For

example, Tominski et al. [44] presented graph lenses such as the

bring neighbors lens. It can be used to bring connected neighbors

of a selected node towards the focused area. Other graph lenses

such as the ones presented by Wong et al. [48] or Panagiotidis et

al. [29] locally distort the routing of edges to create clutter-free

areas. This type of lens was also applied on multitouch enabled

displays by Schmidt et al. [36].

Another technique – called bring & go – was presented by

Moscovich et al. [15]. It moves proxies of adjacent nodes close to

the selected node and can be applied in an incremental way (bring

& go can also be invoked on proxies). Furthermore, Spritzer and

Freitas [42] apply a physics-based approach to change the graph

layout for exploration. Their prototype allows the placement of

magnets which attract nodes with specific attributes.

Tominski et al. [45] developed a radar view mode for graphs.

During navigation by means of a pan-wheel, off-screen nodes are

projected to the border of the current viewport. This gives the user

the possibility to look ahead during panning. In contrast to off-

screen visualization, as we propose it in this paper, this technique

does not use proxies, does not show off-screen nodes permanently

and does not allow interaction with off-screen nodes.

2.3 Cue-based Techniques
Other to the aforementioned approaches, cue-based techniques do

not distort or modify the size of elements to realize a

focus+context visualization [6]. One option is to show proxies as

contextual cues for elements located in the off-screen area. These

proxies are often shown as overlays at the border of the viewport.

In that way, a contextual view on elements currently clipped is

given. In recent years several cue-based off-screen visualization

techniques have been developed. They range from arrows (e.g.

applied in computer games) to techniques such as Halo [1] or

Wedge [16]. The latter were mainly developed for map navigation

on small displays of mobile devices. They are designed to indicate

parameters such as the existence and the direction of off-screen

elements as well as their distance. This is achieved by graphical

overlays visualizing the respective parameters. However, in

contrast to our proxy-based approach they do not show further

information about the off-screen element such as its type, and they

are not interactive.

City Lights [51] is a first sketch for an off-screen visualization

approach which uses proxy elements instead of graphical

overlays. It realizes contextual views for hypertext systems. For

proxy elements different graphical dimensions such as points,

lines and 2D objects are discussed. Furthermore, Irani et al. [18]

presented Hop, which allows users to navigate to off-screen

elements by means of automatic panning. The technique applies a

rotating laser beam to create proxy elements near the focused

item. An extension is WinHop.[19] It opens an inset which shows

the off-screen region around an item represented by a selected

proxy element. In this way, the inset serves as a portal into the off-

screen area. Recently, an approach similar to WinHop was

developed by Ghani et al. [15]. It also applies insets. Thereby, off-

screen locations are shown in small separate views arranged along

the border of the viewport. The insets provide information about

the local neighborhood of off-screen elements and allow panning

and zooming. This is similar to the technique developed by

Karnick et al. [22]. They applied insets for route visualizations on

geographical maps.

User studies on mobile devices were conducted to compare

different overlay techniques. The results showed that Halos

perform very well but the performance is lowered if the amount of

off-screen target increases [3], [34]. A further study by Burigat

and Chittaro [4] showed that Wedges are beneficial for more

complex spatial tasks, such as ordering off-screen location

according to their distance.

The study conducted by Nekrasovski et al. [27] compared

zoom+pan with focus+context (a rectangular rubber sheet) for

navigation tasks within a large binary tree on a common PC.

Halos were used to indicate the position of already visited nodes.

Results showed that the zoom+pan interface was faster and

demanded less mental effort than the focus+context interface.

These findings encouraged us to apply off-screen visualizations to

node-link diagrams. In contrast to Nekrasovski et al., we do not

only visualize the geometric location of an off-screen node by

graphical overlays. We go beyond this rather simple adaption of

already existing approaches and present a technique which applies

proxy elements. This can be understood as a combination of

focus+context techniques (such as bifocal views [41]) and cue-

based approaches. Furthermore, we contribute techniques such as

clustering strategies for proxy elements e.g., based on the diagram

structure, two different ways of projecting off-screen nodes and

visualizing a variety of additional information.

3. THE OFF-SCREEN VISUALIZ ATION

APPROACH
The visualization techniques presented in this paper are based on

the off-screen approaches discussed in Section 2.3. We apply

them to node-link diagrams in general and to UML class diagrams

in particular. This section describes the general idea of our

approach and discusses additional challenges which occur when

off-screen visualization techniques are applied to the domain of

node-link diagrams.

The proposed user interface is structured as follows: The currently

focused part of the diagram is shown within a rectangular

viewport. This is done in the same way as in common diagram

editors. Within this view, navigation takes place by panning and

zooming. The viewport is surrounded by an interactive border

region (see gray area in Figure 1). It is used to show proxy

elements which represent nodes located off-screen.

According to Zellweger et al. [51] there are four different types of

information about unseen objects: Awareness, Identification,

Navigation and Interaction. We interpret them as requirements

and consider them in the following way:

Awareness. The existence of off-screen nodes should be indicated

by the visualization technique, so that users are aware of the

nodes currently clipped. As mentioned above, we achieve that by

applying proxy elements which are displayed within a border

region surrounding the viewport. The position of proxy elements

is determined by projecting the position of the clipped nodes to

the border of the viewport. Different ways of projection are

presented in Section 4.1. The edges between off-screen nodes are

not visualized within the border region to prevent clutter.

Identification. Commonly, diagrams consist of elements of

various types. For example, in UML class diagrams different types

of nodes such as classes, abstract classes and interfaces exist. For

off-screen nodes the respective proxy elements should allow

identifying them in an easy way. Thus, we map existing node

types to the color and the labeling of proxy elements (see Section

4.2 and Figure 5 for details). Furthermore, we propose that edges

connecting visible nodes and off-screen nodes are attached to the

respective proxy elements. This technique ensures that properties

such as arrow heads are always visible and the type of the edge

can be easily identified. Beyond that, further properties such as

edge labels or multiplicities located off-screen are rearranged

accordingly to ensure their visibility.

Navigation. With our technique we support manual navigation.

The position of a proxy element is dynamically updated during

manual panning and zooming according to the position of its

associated off-screen node. In that way, the direction of the off-

screen nodes is always indicated. The dynamic update is based on

the projection mentioned above. In particular, we implemented

two algorithms: radial and orthogonal projection (see Section

4.1). Besides manual navigation, we also support automatic

navigation. If a proxy is clicked, automatic zooming and panning

is started to navigate to the respective off-screen node. This

technique allows for a fast and targeted navigation to a clipped

node (details can be found in Section 5).

In contrast to approaches such as Halo [1] or Wedge [16], we do

not focus on visualizing the distance to an off-screen element. For

most of the diagram notations we consider this information as less

important compared to other information such as the type of a

clipped node or its location in relation to other nodes.

Interaction. Off-screen visualizations should also include

interaction techniques. Besides supporting manual and automatic

navigation, our proxy elements are interactive and can give further

information about associated off-screen nodes on demand, such as

previews. These and further interaction techniques are also

discussed in Section 5.

Beyond the mentioned requirements, several new challenges have

to be taken into account when off-screen techniques are applied to

the domain of node-link diagrams. This includes scalability, the

shape of proxies and the diagram layout and edge routing:

Scalability. Off-screen visualization techniques usually suffer

from cluttered proxies if a large amount of off-screen elements

exist. To address this problem we propose automatic clustering

and interactive filtering of proxy elements. Different clustering

strategies are presented in Section 4.2 and filtering is presented in

Section 5.4. A user study (presented in Section 8) showed that our

clustering techniques are applicable at least for diagrams with up

to 100 nodes. However, the results made us confident that our

approach will also support larger diagrams with several hundred

nodes. For larger diagrams we propose a specific technique called

Area of Influence (see Section 4.2.3).

Shape of proxies. Indicators such as arrows, halos or wedges are

hard to distinguish from edges and their visual properties (e.g.

arrow heads). We decided to apply proxies which resemble the

concrete visual syntax of the diagram notation. Therefore, for

class diagrams we use proxies with a squared shape (see Section

4.2).

Diagram Layout and Edge Routing. The diagram layout and the

routing of edges should be preserved by the visualization

technique. For many types of diagrams the layout of nodes and

edges can express a special meaning. It is used as a secondary

notation [31] and is an important visual guide for users to build a

mental map of the diagram. Several layout guidelines for

particular types of diagrams exist (to produce aesthetic layouts).

For UML class diagrams e.g., within inheritance hierarchies,

general classes should be arranged above their subclasses. Further

aesthetic rules are presented by Eichelberger et al. [10]. As

previously mentioned, edges leading to the off-screen area are

attached to proxy elements. This can result in layout changes

during panning and zooming. We investigated several solutions

for this problem; they are presented in detail in Section 4.1.

4. VISUALIZATION DETAILS
In this section we investigate several design alternatives for all

parts of our off-screen visualization technique. We contribute

promising solutions and discuss their benefits and drawbacks. We

start with issues occurring within the viewport. After that, we

discuss the appearance of the proxy elements. Finally, we present

different possible designs for the interactive border region.

4.1 Projection
Proxy elements are created within the interactive border region by

means of projecting the positions of off-screen nodes to the border

of the viewport. Edges between visible nodes and clipped nodes

are attached to the respective proxy elements. In that way, the type

of the edge is always visible. Furthermore, we suggest applying

two border colors for proxy elements. Proxy elements with

attached edges have a darker border color than proxies with no

edges (see Figure 4). Beyond that, proxies with attached edges are

rendered always in the foreground above other proxies and are

never aggregated in geometric clusters (see Section 4.2.1). In that

way, proxies representing the next connected off-screen neighbors

of visible nodes, are easy to perceive and are always directly

accessible.

Figure 2. Proxy elements are created by projecting off-screen

classes onto the interactive border region (gray area). For

edges connected with proxy elements the routing is changed

(see aggregation between C2 and C4).

In Figure 2 Class C1 and C2 are both on-screen and connected

with Class C3 by generalization relationships. Class C3 is located

off-screen and represented by the proxy element 3’. Both

generalizations are attached to this proxy element, denoted by the

black generalization arrows. Otherwise, the arrow heads would be

located off-screen and not be visible for the user (see gray

generalization arrows). The edge is automatically released from

the proxy element and attached back to the respective node when

the node becomes visible due to zooming or panning.

Next, we discuss how projecting nodes in a geometric way affects

edge routing and present solutions to make these effects as

comprehensible as possible. After that, we present a technique

which preserves edge routing completely.

4.1.1 Geometric Projection
The two most obvious and natural ways of projecting nodes onto

the border of the viewport are orthogonal and radial projection.

We subsume these two possibilities as geometric projection. For

orthogonal projection nodes are projected perpendicular to the

border of the viewport. For radial projection nodes are projected

towards the center of the viewport. Both ways clearly indicate the

direction of an off-screen node. An example for both approaches

is shown for Class C6 in Figure 2. Orthogonal projection results

in the proxy element 6’ and radial projection in proxy element 6’’.

All other nodes in Figure 2 are projected in the orthogonal way

only. A special case occurs if classes are located in one of the four

off-screen areas towards the corners of the viewport (see Class C5

in Figure 2). They cannot be projected onto an edge of the

viewport by orthogonal projection. Thus, respective proxies are

created in the corner of the viewport. Clusters are created if

several proxies appear in a corner (for details see Section 4.2).

When geometric projection is applied, the edge routing is changed

dynamically during pan and zoom interaction. This happens

because edges stick to the proxy elements as described above. In

particular, this becomes problematic if an edge is bent and

Figure 3. Concept sketch for routing edges along the border of

the viewport: rerouting by proxy edges with straight segments

(left) and rendered in a rubber band style (right) .

consists of several segments. This can be observed in Figure 2 for

the generalization between Class C1 and C5 and for the

aggregation between Class C2 and C4. The edges are bent and

inflection points are located in the off-screen area. In the depicted

example a proxy edge is inserted from the last on-screen inflection

point to the proxy element. This approach does not change the

entire edge routing, but still changes the route significantly. We

suggest rendering proxy edges in a different color than actual

edges to signal that they do not represent the original edge (see

Figure 2 and Figure 4 where proxy edges have a black color).

A permanent change of the edge routing during panning and

zooming can be hard to comprehend for the user. Furthermore,

guidelines for aesthetic diagram layouts [10] can be violated, as

edges crossing each other or edges crossing nodes can occur. In

the following we present solutions to make the change of edge

routing as comprehensible as possible. A second goal is to

preserve at least the routing of the visible part of the edges.To

address these problems, we came up with two different solutions:

animated inflection points and routing along the border.

Animated Inflection Points. In order to make the change of edge

routing more comprehensible, we suggest animating the inflection

points towards the proxy edge. The animation starts when the

respective node moves off-screen. When the node becomes visible

again, the inflection points are animated back to their original

position. The drawback of this approach is that even visible parts

of an edge are changed. In addition, proxy edges can cross other

edges or even nodes.

Routing along the Border. Our second solution is to route off-

screen edges along the border of the viewport. With this approach

the visible part of an edge maintains its routing completely. Proxy

edges start at the intersection point of the original edge and the

border of the viewport and lead to the proxy element (see Figure 3

left). The proxy edge is routed according to the original edge (in

Figure 3 first downward and then to the left). Another variation of

this approach is depicted in Figure 3 right. Here the proxy edge is

rendered as a smooth curve e.g., by means of a Bezier curve. It

can bend dynamically in a rubber band style during panning. This

makes the appearance of a proxy edge more comprehensible. The

general drawback of this solution is that edge clutter can occur

along the border of the viewport if an off-screen node has many

edges.

4.1.2 Projection along Edges
To avoid the change of edge routing completely, we suggest along

edge projection. In this approach off-screen nodes which are

connected with visible nodes are projected along their edges. In

that way, proxy elements appear at the first intersection point of

the edge and the border of the viewport. Thereby, the layout of

edges is maintained. Figure 4 depicts the same example diagram

as in Figure 2 but with along edge projection. Off-screen nodes

Figure 4. Proxy elements are created by along edge projection:

proxies appear where an edge crosses the viewport (see

proxies 5ô and 4ô). An off-screen node can be represented by

several proxies (see proxies 3ô and 3ôô; both represent class

C3). Temporal geometric projection: if proxy 4ô is hovered, 4ôô

appears to indicate the proper direction of class C4.

are projected by means of orthogonal projection if they are not

connected with visible nodes. Otherwise they are projected along

the edge (e.g., 4’ and 5’). There are two further characteristics of

this technique. An off-screen node can be represented by more

than one proxy element, if the node has several edges. In this case

one proxy is created for each edge. This can be observed in Figure

4: for Class C3 a proxy element appears for each generalization

Figure 5. Different shapes for proxy elements (left), from left

to right: class, abstract class, interface and a cluster of four

nodes. Proxy for a class and attached edges (right).

relationship (3’ and 3’’). Furthermore, if nodes are connected by

means of bent edges the location of the proxy element does not

correspond to the off-screen position of the associated node. In

Figure 4 the proxy element 4’ (representing Class C4) appears at

the right border, but the Class C4 is located at the bottom. This

can be confusing for the user, as when the proxy element is

clicked, the viewport does not move in the expected direction.

We address this problem by applying a temporal geometric

projection. It is performed only when a node projected by means

of along edge projection is hovered with the mouse cursor. The

associated node is additionally projected geometrically. This

results in a second proxy element which indicates the actual

direction of the node. In Figure 4 the proxy 4’’ is a temporal

proxy for 4’ which appears only when 4’ is hovered. However, it

has to be clarified if along edge projection and temporal

projection are comprehensible for the users.

4.2 Proxy Elements and Clustering
In our current implementation we distinguish between four

different types of off-screen nodes. For the respective proxy

elements we use rectangular shapes with different coloring and

labeling. Thereby, the chosen colors comply with the colors of the

associated nodes. The applied shapes are depicted in Figure 5 left:

proxies for classes are yellow rectangles; proxies for abstract

classes are less saturated and additionally labeled with “A” and

proxies for interfaces have a higher saturation and are labeled with

“I”.

Attaching edges to proxy elements can result in clutter. For

example, if several edges with arrow heads are attached, the arrow

heads can occlude each other. To prevent this problem each proxy

owns a so-called edge port. An edge port is a small semicircular

extension of a proxy element and provides more space for

attaching edges. It has the same color and reaches from the

interactive border region into the workspace (see Figure 5 right).

Edge ports only appear when the associated off-screen node is

connected with visible nodes. We decided that edge ports should

be present even if the attached edges have no arrow heads and

even if just one edge is attached to the proxy. This clearly

visualizes that the edge is attached and makes our visualization

more consistent.

To avoid clutter within the interactive border region, we suggest

clustering of proxy elements. In that way a scalable technique can

be realized for large diagrams. In the following Subsections 4.2.1

and 4.2.2 we present two different ways of clustering proxy

elements: geometric and structural clustering. Both can be applied

simultaneously and are applicable for diagrams with several

hundred nodes. The user evaluation presented in Section 8 shows

that the clustering techniques work well with diagrams up to 100

nodes. However, we are confident that these techniques will also

be beneficial for diagrams with several hundred nodes. For

diagrams with even more nodes we suggest to apply an area of

influence. Details of this technique are presented in Subsection

4.2.3.

4.2.1 Geometric Clustering
Geometric clustering is applied if several proxy elements are

overlapping by more than 30% of their width or height, as they

are created at positions very close to each other. In that case, the

actual proxies are replaced by a single cluster proxy. For an

example see Figure 6 (left hand side), where the classes C3 and

C4 are represented by a cluster proxy. They are depicted as an

icon which indicates aggregated elements in a stacked way (see

Figure 5). Furthermore, cluster proxies show the number of

aggregated elements (two in Figure 6). The number is

incremented if an associated node moves from the viewport to off-

screen and decremented when a respective node becomes visible.

Furthermore, for orthogonal projection cluster proxy elements are

created for nodes located in the off-screen areas towards the

corners of the viewport (see Classes C6 and C7 in Figure 6).

With geometric clustering, proxies are clustered even if there is

free space available in the surrounding area. For example, in

Figure 6 (left hand side) there is free space above and below the

cluster proxy for C3 and C4. For this case, we implemented an

algorithm that checks the neighborhood of an existing proxy

element. If another proxy element is going to be placed at the

same position and free space is available in the immediate

vicinity, the proxy element is placed at the free position instead of

being hidden in a cluster. Proxies positioned in this way could

slightly overlap to indicate that they belong to a cluster.

Whether an avoid cluster algorithm is useful depends on the type

of diagram. For instance, in state charts or activity diagrams this

kind of clustering is certainly not beneficial. For these kinds of

diagrams arranging nodes in a vertical or horizontal layout is part

Figure 6. Geometric clustering (left) and structural clustering

of an inheritance hierarchy (right).

of the secondary notation [31]. For example, it can be confusing

to place proxy elements above each other, although their

associated nodes are arranged in a horizontal line.

4.2.2 Structural Clustering
Besides geometric clustering, proxy elements can also be

clustered according to structural relationships based on the visual

syntax of the particular diagram notation. For UML class

diagrams we propose the clustering of inheritance hierarchies.

Further possibilities would be to cluster elements belonging to the

same package or classes connected by means of aggregation or

composition relationships. Figure 6 (right hand side) shows an

example for this technique. The visible class C1 is part of a

hierarchy located off-screen. All classes which are directly or

indirectly sub-classed from class C2 are aggregated into one

cluster.

According to geometric clusters, structural cluster elements show

the amount of clustered classes by means of a number (in this case

six). Again, the number is incremented and decremented when a

clustered node becomes visible or invisible respectively.

Structural cluster proxies are located at the place where the next

connected off-screen node of the cluster is projected. In Figure 6

(case 2) C1 is connected with off-screen class C4 and the cluster

proxy appears at the position where C4 is projected by means of

orthogonal projection.

Figure 7. A rectangular virtual area of influence is located

around the viewport (typically, the screen). All nodes within

this area are represented as proxy elements. Nodes outside the

area are ignored.

If additional meta-information or semantic information is

available this can also be applied for creating clusters. For

example, proxies could be clustered if they belong to a certain

part of a class hierarchy or to a sub-graph with associated

semantic meaning. Another example is the application of meta-

information for feature-oriented software development1. Thereby,

classes attributed to a certain feature could be clustered.

4.2.3 Area of Influence
If diagrams with hundreds or even thousands of nodes are

visualized, even the clustering strategies mentioned before may

not be applicable. In this case, we suggest that the currently

visible part of the diagram within the viewport (e.g., the editor

window) is surrounded by a virtual area of influence (see Figure

7). The area of influence is part of the off-screen area and can

have arbitrary shape. Typically rectangular or circular shapes will

be used. Only off-screen nodes residing within this area of

influence are represented as proxies. All other, further away off-

screen nodes are ignored and filtered. Further filter techniques are

described in Section 5.4. The area of influence moves with the

viewport during panning and grows and shrinks during zooming

(proportional to the applied zoom factor). To always show a

predefined maximum number of proxies, the size of the area of

influence can also vary according to the amount of off-screen

nodes located within the area. It gets bigger if the viewport is

located in a sparse region of the diagram and becomes smaller if it

is located in a dense region. Finally, if the off-screen visualization

technique is combined with a traditional overview+detail

interface, the area of influence can also be indicated within the

overview window.

4.3 Design of the Interactive Border Region
For the appearance of a proxy element, there are different design

variants conceivable. They depend on the dimension of the border

region (see Figure 8). For a one-dimensional (1D) border, proxy

1 See http://fosd.de/ for further information on feature-oriented

software development

elements can be drawn as symbols with different colors, shapes or

labels. Their spatial layout and how they are positioned to each

other on the two dimensional canvas is not considered by this

representation. In particular, approaches such as the onion-graph

notation [23] can be applied for clustered inheritance hierarchies

in class diagrams. Thereby, proxy elements can be put inside each

other to visualize the clustering.

Furthermore, we propose to stack proxies according to their

position within the diagram layout. This could be seen as a 1.5D

solution, as the spatial position of nodes would be recognizable

without a complete 2D layout. Finally, the border region could

allow a two dimensional arrangement of proxy elements according

to the geometric layout of the associated nodes. This would result

in a bifocal view [41] providing a condensed view of the

remaining diagram within the border. Furthermore, we propose to

use rounded corners for the interactive border. This approach can

avoid clustering of proxy elements in the corners of the display if

orthogonal projection is applied. Beyond that, for radial

projection rounded corners can avoid an abrupt change of

direction of proxy elements during panning. These solutions are

subject of further investigation.

Figure 8. Different dimensions of the border region, from left

to right: 1D, 1.5D and 2D. Border region with rounded

corners (right).

5. INTERACTION TECHNIQUES
The previous section provided a detailed description of the

visualization techniques of our approach. In this section we

present how users can interact with the off-screen visualization

and how it reacts on user input. Like in common diagram editors

we support manual panning (e.g., by mouse dragging) and

zooming (e.g., by using the mouse wheel). Thereby, the positions

of proxy elements are constantly updated. The update takes place

according to the position of the associated off-screen nodes and

the applied projection algorithm. Furthermore, when a node

crosses the border of the viewport, the respective proxy element is

blended smoothly in and out, to make the relation of node and

proxy comprehensible. Besides this manual navigation our system

also realizes automatic navigation which is described in the

following. We start with the appearance of node previews and

then the automatic navigation itself is explained. Finally, we

present further techniques such as inserting edges via proxies and

interactive filtering.

5.1 Preview of Off-Screen Nodes
Hovering with the mouse cursor over a proxy, results in a preview

of the associated node. The preview is shown as an overlay within

the diagram workspace and is located close to the border region at

the side of the respective proxy element. For cluster proxies a list

of previews appears consisting of one preview for each clustered

node (see Figure 9 left). In our prototype a preview shows the

label of the class or interface. Each preview has the same color as

the associated proxy element. The previews are blended out

smoothly when the mouse cursor is leaving the proxy element.

Besides that, if a visible node is selected, the proxy elements

http://fosd.de/

Figure 9. A list of previews is shown if a proxy is hovered

(left). Expandable previews (center) can give further

information about the content of an off-screen node and allow

in situ editing (right) .

which are directly connected with the selected node could show

their previews automatically. In that way, a user can easily get

more information about nodes connected with the currently

selected node.

Showing the label of the associated off-screen node is certainly

the simplest version of a preview. Previews could also show

further details of the content of a node like with semantic zooming

[30]. Beyond that, the relationships of nodes could be visualized

by previews. Concepts for these approaches are presented in the

following subsections.

Content previews. Expanding the previews can give access to the

content of the respective node. Figure 9 (center) shows a preview

label which is equipped with a “+” button. If it is pressed, the

preview is expanded and attributes and methods of the associated

class become visible (Figure 9 right). With these previews it is

possible to edit off-screen nodes in situ without time consuming

zooming and panning. For example, content can be added, deleted

or changed by interacting with the expanded preview as with a

normal class. If previews become too big due to too much content,

several levels of detail could be used.

Topological previews. Besides details concerning the content of

an off-screen node, previews can also show relationships between

nodes. Thereby, the topology of an off-screen sub-graph is

visualized but not its actual layout. Figure 10 shows the

topological preview for the example of Figure 6. The list of

previews for a cluster is equipped with a button (Figure 10 left). If

it is pressed the previews are dynamically rearranged and the

complete inheritance hierarchy is visualized within a dedicated

area (Figure 10 right). Furthermore, the area can be changed to

arbitrary size by dragging its border.

Of course both approaches – content and topological previews –

can be used at the same time. Preview labels shown in a

topological preview can be expanded to edit their content.

5.2 Automatic Navigation
In addition to traditional navigation by manual panning and

zooming, we offer automatic navigation. This is achieved by

clicking a proxy element or a preview which results in an

automatic zoom+pan animation to the respective off-screen node.

With this technique it is possible to focus a particular node in a

targeted and fast way. In particular, users are able to explore the

topology of the diagram by hopping from node to node. In UML

class diagrams for example, this technique can be applied to

navigate within inheritance hierarchies along generalization

relationships by clicking proxies which represent connected

classes. To make the automatic navigation as smooth and

comprehensible as possible, we applied simultaneous panning and

zooming according to the algorithm introduced by van Wijk and

Nuij [47].

Figure 10. Topological preview of clustered nodes. The

preview shows how the nodes are connected.

If a cluster proxy is clicked, the viewport is animated in a way that

all clustered nodes are focused. To navigate to a specific node

which is aggregated within a cluster proxy, there are two options.

Either the respective node is chosen from the list of previews or a

double click is performed on the cluster proxy. By means of the

double click the cluster proxy is expanded in an animated way,

showing all clustered elements as single proxies. For geometric

clusters the expanded proxies are distributed evenly in the

neighborhood of the cluster. For structural clusters all associated

nodes are projected by means of geometric projection resulting in

proxy elements at the respective location.

Figure 11. Two screenshots of our prototype: A particular part of the class diagram is focused (left). The position of the proxies is

dynamically updated during panning and zooming. For example, panning the view to the left and down (indicated by the blue

dashed line and the arrows, added to the Figure for illustration), results in the screenshot at the right hand side.

5.3 Inserting Edges
Besides providing a context visualization and quick navigation

to clipped nodes, our technique also supports basic editing.

Edges can be created between visible nodes and off-screen

nodes. Thereby, an edge is dragged from the respective node to a

proxy element of the border region. As a result, it is connected

automatically with the associated off-screen node. Thereby, the

inserted edge is connected with an already existing edge port or

the edge port appears when the edge is dragged on top of the

proxy element. In that way, labels and other properties such as

multiplicities can be edited in place without further panning and

zooming. If the edge is dragged on top of a cluster proxy,

previews for all containing nodes are shown. An edge can be

created by dragging it to the particular preview. However, other

nodes can be located in the way of the inserted edge. Therefore,

an automatic edge routing which avoids the crossing of nodes

such as described by Wybrow et al. [50] should be applied.

5.4 Interactive Filtering
In addition to automatic clustering we propose interactive

filtering of proxy elements to prevent clutter and to make our

technique scalable to large diagrams. Filter criteria can be

adjusted interactively by means of user interface widgets. As a

result, proxies not meeting the applied criteria are blended out.

There is a variety of filter criteria conceivable. For example,

proxies can be filtered according to their type (e.g., only proxies

representing abstract classes are shown), according to their

topological distance from the focused node (e.g., only proxies of

directly connected classes are shown) or according to particular

metrics (e.g., only proxies of god classes [33] with a huge

amount of attributes and methods are shown).

6. THE PROTOTYPE

We implemented the off-screen visualization approach as a

prototype for navigating and editing UML class diagrams.

Figure 11 shows two screenshots of the prototype as it was also

used for the user studies presented in Section 7 and Section 8. In

the following subsection we describe the implemented features

and the basic algorithmic approach for the off-screen

visualization.

6.1 Implemented Features
The application is written in Java whereby the graphical user

interface is based on Qt Jambi. For keeping a consistent graph

structure the open source toolkit jGraph [26] is used.

Furthermore, the prototype is based on the Eclipse UML model

[9] and diagrams can be imported by means of XMI. Besides

creating layouts in a manual way, it is also possible to apply

automatic layout algorithms offered by jGraph and Zest [52].

The layout of a diagram is stored in a separate file, using our

own XML format.

The class diagram is shown in the center region. Proxy elements

for off-screen nodes are placed within the interactive border

region (depicted with light gray background in Figure 11). Users

are able to pan by dragging with the mouse (holding the left

mouse button pressed) and to zoom with the mouse wheel.

Proxy elements are dynamically updated during interaction.

Our prototype is capable of visualizing class diagrams consisting

of classes, abstract classes and interfaces. Concerning

relationships, associations (directed and undirected),

generalizations and realizations can be shown. However, edge

labels and multiplicities are not yet visualized. All nodes are

represented by respective proxy elements. Their appearance is

shown in Figure 5. We realized both ways of geometric

projection (orthogonal and radial) and along edge projection as

explained in Section 4.1.2. For geometric projection, the change

of edge routing is performed by inserting a proxy edge segment

from the last visible inflection point to the respective proxy.

Proxy elements are clustered when two or more proxies are

created at the same position (see Figure 5 for cluster icon).

Furthermore, we implemented a simple algorithm for avoiding

clusters (see Section 4.2.1). If there is enough space available

proxies are placed side by side until a certain distance threshold

is reached. Besides that, we implemented structural clustering

for inheritance hierarchies. If parts of a hierarchy are located off-

screen they are aggregated in a cluster. When proxies are

hovered with the mouse cursor, labels of the associated classes

or interfaces are shown as previews. The previews are blended

out smoothly with a one second delay after the mouse has left

the proxy or disappear immediately if the background is clicked.

We also realized temporal geometric projection for along edge

projection (as described in Section 4.1.2).

6.2 Implementation Details
In our prototype the border for the off-screen visualization is a

separate user interface component which encapsulates the

algorithms for visualizing the proxy elements.

As an initial step, all nodes are determined which are currently

rendered completely (with their whole bounding rectangle) in

the viewport. They are marked as on-screen. Furthermore, nodes

intersecting the viewport and all nodes currently not rendered

are labeled as off-screen. Then proxy elements are created for

each off-screen node. The position of the proxy is determined by

projecting the center of the respective node onto the border of

the viewport. This is achieved by intersecting the border with

the line through the nodes’ center to the center of the viewport

(for radial projection) or perpendicular to the viewport (for

orthogonal projection).

The basic algorithm is divided into three steps: determine on-

screen and off-screen nodes, updating the positions of the

proxies and creating and updating the clusters.

Determine on-screen and off-screen nodes. For each viewport

update (panning and zooming) at step n the currently visible

nodes are determined. This snapshot is compared to the visible

nodes of step n-1. Nodes which are completely visible at step n

but were not visible at step n-1 moved from the off-screen area

to the on-screen area. Their proxies are deleted (possibly

removed from clusters) and they are marked as on-screen. In

contrast to that, nodes which are not visible anymore or just

partly visible are marked as off-screen.

Updating the positions of the proxies. As a next step, the

positions of the proxies are updated by performing the

respective projection. In our algorithm proxies with attached

edges (associated to nodes connected with on-screen nodes) are

updated first. They are preferred, as lagging is particular

noticeable for them when they fall behind their faster moving

edges. During this step, along edge projection is performed,

whereby the proxy is positioned at the location where the edge

intersects the viewport.

After that, all unconnected proxies are updated. If geometric

clustering is enabled and orthogonal projection is applied, it is

not necessary to move every single proxy. If proxies are

clustered, it is sufficient to update the position of the whole

cluster (as proxies once clustered, never leave the cluster and

move along with it).

For radial projection, proxies associated to nodes located closer

to the viewport move faster than proxies for nodes positioned

further away. Therefore, proxies which were overlapping at step

n-1 do not necessarily have to overlap at step n. Therefore,

geometrical clusters can change and the position of each proxy

has to be updated separately. This makes radial projection more

computationally expensive.

Creating and updating the clusters. Proxies for nodes which

moved off-screen are added to structural clusters if certain

conditions are met (e.g., the node is part of an inheritance

hierarchy). If the proxy is not part of a structural cluster and if it

is not connected with an on-screen node, the system checks if it

overlaps with other proxies. If an overlap exists, the proxies are

aggregated in a geometrical cluster.

The off-screen visualization component runs in its own thread to

allow smooth interaction. With the approach described above,

we are able to navigate diagrams with up to 400 nodes without

performance issues.

7. Pilot Study

We conducted two studies. First, we ran a pilot study with our

early prototype. Our goal was to collect feedback at an early

stage of development, to come to decisions for further design

iterations. After that, we conducted a controlled user evaluation

with the prototype modified according to the results of the pilot

study. It is presented in Section 8.

In particular, with the pilot study we wanted to clarify the

following questions: Are people able to understand the

visualization technique spontaneously? Which kind of geometric

projection is preferred – orthogonal or radial projection? Are the

proxies properly designed and distinguishable from each other?

Is along edge projection comprehensible? We applied a think-

aloud approach in combination with user observations and a

questionnaire.

7.1 Design of the Study
Apparatus. The evaluation was conducted with the prototype

mentioned in Section 6. It ran on a PC with 2.5 GHz and 3 GB

RAM under Windows XP. The display had a resolution of

1680x1050 pixels and a screen size of 20’’, because we

considered this as common for average workplaces.

Participants. Eight participants (6 male, 2 female, age from 24

to 35) took part in the evaluation (6 employees of the computer

science department, 2 graduate students). They all have a solid

background in computer science, visualization or HCI. They

were not modeling experts, but knew UML class diagram

notation and used respective editors from time to time.

Tasks and procedure. Before the evaluation procedure started,

the basic approach of the off-screen visualization was explained.

This was done by means of the prototype and a small example

diagram consisting of ten nodes and six edges. We explained the

zoom+pan navigation, the meaning and appearance of proxy

elements and the interaction with proxies (hovering and

automatic navigation). However, we did not explain further

details such as projection or clustering strategies. Orthogonal

projection for unconnected nodes and along edge projection for

connected nodes was used. The whole introduction took about

5-10 minutes.

The evaluation procedure was structured in two parts. Part one

consisted of a guided navigation within a smaller class diagram.

This means, we asked the participants to navigate to particular

nodes by clicking on proxies and guided them on a way through

the diagram. During the procedure we asked them about their

opinions concerning certain design issues and logged their

comments and behavior.

Before they started to use the prototype, a printout of the UML

class diagram was handed to the participants. The structure of

the diagram was explained to them, and they were asked to

memorize the spatial layout of the diagram for 1-2 minutes. To

make its content easily understandable, the diagram modeled the

structure of a theater. For example, there were classes named

actor and stage play. An actor plays a role within a stage play

which was expressed by an association. Furthermore, a stage

play is a special kind of event – expressed by a generalization.

The diagram consisted of 31 classes (3 of them abstract) and 35

relationships (18 associations and 17 generalizations). The

diagram was layouted manually according to aesthetic rules

[10]. For instance, general classes were always located above

their subclasses, crossing of edges was avoided and classes

belonging together on a semantic level were also located close

together in the layout.

Every participant started the guided navigation at the same

position and followed the same navigation path given by our

instructions. In particular, we asked the participants to perform

several smaller tasks. We asked them to estimate the direction of

a class located off-screen, to indicate an off-screen class on the

printout without using the previews and to navigate to a certain

class and tell its directly connected neighbors. Furthermore, we

asked them to count abstract classes to see if proxies are

distinguishable from each other. At a certain point of the

navigation a temporal projection (see Section 4.1.2) occurred, as

the respective class was connected by means of a bent edge. We

asked the participants if they could explain this behavior

spontaneously and discussed this technique. At the end of part

one, participants were asked to explicitly compare geometric

projection and along edge projection. For that, they were asked

to navigate freely in both modes. To clearly demonstrate the

creation of several proxies for one class in along edge projection

mode, a class with eight edges was used. For each edge one

proxy was created.

In part two, the participants were asked to freely explore an

unknown UML class diagram consisting of 72 classes, 8

interfaces and 89 relationships (30 associations, 45

generalizations and 14 realizations). The exploration had a

duration of approximately five minutes. Subsequently, we

demonstrated the avoid cluster algorithm and asked the

participants if it is comprehensible to them.

During both parts, we took notes about our observations, and the

participants’ comments and suggestions. Beyond that, at the end

we handed a questionnaire to them with four questions. For

example, they were asked to rate the discriminability of proxy

elements and the comprehension of automatic zoom+pan on five

point Likert scales (from 1 = “completely disagree” to 5 =

“completely agree”).

7.2 Results of the Pilot Study
Navigation. All participants quickly understood the basic

approach of the off-screen visualization technique. However, for

the first navigation task most of them spontaneously applied

traditional zooming and panning. After an additional hint that

navigation is also possible by clicking on respective proxy

elements, participants mainly applied this approach. Especially,

two participants emphasized that they liked the idea of

“navigating the diagram step-by-step” by clicking proxies and

jumping from node to node.

Participants commented that zoom+pan animation was too quick

and should zoom out more during panning to give a decent

overview. Hence, the comprehensibility of the animation was

rated with a rather low mean value (M = 1.6, see Figure 12).

However, the animation parameters can be easily adjusted.

Furthermore, two participants remarked that they would not

need a smooth animation at all, as their only attempt is to

quickly navigate to the associated node.

Projection. Most of the participants (6 of 8) expected radial

projection and were not able to identify off-screen nodes

correctly without using the preview function. The question if

off-screen nodes were located at the expected position was rated

with a mean value of 3.0 (see Figure 12). Furthermore, after

explaining the principle of along edge projection was

comprehensible to the participants. Most of them liked the idea

of maintaining the routing of edges. However, many participants

mentioned that the occurrence of several proxies for the same

node is confusing and suggested a clearer indication which

proxies are associated to the same node. Similar results were

collected for the temporal projection. It was understood by the

participants after explanation, but they suggested a clearer

indication of temporal proxies.

Appearance of Proxies. Proxy elements representing classes

directly connected with visible nodes were clearly

distinguishable from other proxy elements. The discriminability

of proxy elements was rated with a mean value of M = 2.3 (see

Figure 12). As mentioned in Section 4.2, the color of the proxies

matched with the color of the respective node. Many participants

suggested using different colors which are more distinguishable

from each other. However, all participants were able to identify

the different types of proxy elements when they were asked to

count proxies representing abstract classes and interfaces.

Furthermore, five participants suggested adding more

information to the proxies, such as the amount of methods or

attributes of a class.

Further observations and comments. One participant

suggested a history function as suggested in [38], to navigate

back to previously visited nodes. This can be beneficial if a

proxy was clicked by accident or if navigating back is necessary

during the editing process. Furthermore, three participants asked

for a distance indication. As previously mentioned, we assumed

this as less important for the domain of node-link diagrams. For

which tasks distance indication is beneficial and how it can be

achieved in combination with our approach is subject for further

investigation. Moreover, six participants asked for an overview,

and we observed that all participants used the printout of the

diagram for orientation. The orientation within the diagram was

rated with a mean value of M = 3.1 (see Figure 12). In fact, an

overview was already implemented for the editor but we turned

it explicitly off for the evaluation. In which way an overview

supports our approach is studied in the evaluation presented in

Section 8.

Figure 12. Results of the pilot study questionnaire

7.3 Adoptions resulting from the Pilot Study
Based on the observations and comments we collected during

the pilot study, we changed our prototype in several ways.

Along Edge Projection. Due to along edge projection some

nodes (with several edges) were represented by several proxies.

As we have found in the pilot study, some participants were

confused especially, when a node was represented by many

proxies. To mitigate this problem, we slightly adopted the

approach used in the pilot evaluation. Both projection

techniques – geometric and along edge projection – are now

applied simultaneously. An example is illustrated in Figure 13.

Geometric projection is used for nodes connected with straight

edges such as the generalizations from C1 to C2 and C3. In this

case the change of edge routing is rather easy to comprehend,

and it is ensured that there is just one proxy for the node (instead

of two). Along edge projection is applied only for nodes

connected with bended edges to prevent confusing changes of

edge routing. In Figure 13 this is the case for the association

between class C1 and C4. Furthermore, proxies created by along

edge projection are drawn in a semi-transparent style to

distinguish them from geometrical projected proxies.

Figure 13 Combination of along edge projection (for bended

edges) and geometrical projection (for straight edges). Class

C1 is represented by two proxies instead of three.

Temporal Projection. To indicate temporal projection more

clearly we decided to visualize the routing of edges temporally

within the border region. An example for this is illustrated in

Figure 14 left. If one of the proxies created by along edge

projection (1` or 1`)̀ is hovered with the mouse cursor, a

temporal projected proxy appears (1*) and the routing of edges

is indicated by proxy edges leading to the temporal projected

proxy. If the proxy edge crosses other proxies they are grayed

out to prevent clutter within the border region (see Figure 14

right). In that way it is clearly visualized how the visible nodes

are connected with off-screen nodes and which nodes are

represented by several proxies.

Figure 14. Left: If one of the proxies is hovered, proxy edges

are shown within the border region to clearly indicate that

one node is represented by several proxies. Right: Screenshot

from the prototype. If a proxy edge crosses other proxies

they are grayed out to make the routing clearly visible.

Clustering. We added animation to the proxies to make the

creation of geometric clustering (see 4.2.1) more

comprehensible. For that, we decoupled the movement of

proxies during panning and the creation of clusters from each

other. During the panning process the position of proxies is

dynamically updated and proxies can overlap or even occlude

each other when they move within the border region (see Figure

15, left and center). This happens especially when radial

projection is applied as proxies representing nodes closer to the

viewport move faster than proxies of nodes located farer from

the viewport. A drop shadow was added to proxies to make the

overlapping clearer. When the user stops panning, overlapping

proxies are animated towards each other. When they completely

overlap, they are deleted and a cluster icon is blended in

smoothly (see Figure 15, right). In that way, updating the

position of proxies during panning and the creation of clusters

are decoupled from each other.

Figure 15. Screenshot of the prototype: During panning

proxy elements (left) can overlap (center). If the user stops

panning the overlapping proxies are animated towards each

other and a cluster proxy appears (right).

History Function. We also added a history function for the

automatic navigation by clicking on proxies. In contrast to

traditional undo functions (e.g., Ctrl+Z), it can be applied to

quickly navigate back to previous views. Other activities such

creating or editing diagram elements are not affected. The

history function can be invoked by holding a keyboard shortcut

(e.g., the shift key in our prototype). As a result the proxies for

the last five visited nodes are highlighted; all other proxies are

grayed out. In that way users are able to quickly see the recently

visited nodes and to jump back to them directly by clicking.

After they have navigated back to a particular node, the history

function can be invoked again (and the last five visited nodes are

highlighted again). This technique allows going back in

navigation history with a maximum step size of five steps. We

chose to initially visualize the last five nodes to reduce the

cognitive burden of the user. However, we suggest setting the

amount of highlighted proxies (and thereby the maximum step

size) dynamically by mouse dragging. For example, by

activating the history mode, pressing a mouse button and

dragging the mouse horizontally users could adjust the number

of highlighted proxies. Moving the cursor from left to right

blends in more proxies of the recently visited nodes according to

their position in the history. This can be done until all proxies

are highlighted or the end of the complete history is reached.

Moving the cursor in the opposite direction reduces the amount

of highlighted proxies.

8. User Evaluation
With the improved prototype we conducted a controlled

experiment to evaluate the performance of our approach more

deeply. Our goal was to investigate to what extent the off-screen

visualization improves diagram navigation concerning speed and

user satisfaction. Beyond that, we wanted to find out if users are

able to stay oriented within an unknown diagram while

navigating by clicking on proxies. Therefore, we ran a study

with three conditions (see Figure 16). We compared a

zoom+pan interface with overview+detail as applied in state-of-

the-art diagram editors (condition OD, Figure 16, top) and the

off-screen visualization technique without overview (condition

OS, Figure 16, center). We expected that OS users will be faster

than OD users due to automatic navigation by clicking proxies.

Furthermore, we expected that the automatic zoom+pan

animation will support the participants’ orientation as good as

manual navigation. In addition to that, we ran the evaluation

with a user interface realizing the off-screen visualization

technique combined with an overview window (condition

OS+OD, Figure 16, bottom). We expected that the presence of

an overview window will improve the orientation within an

unknown diagram as participants have an additional view to

easily spot their location. However, we did not expect that an

additional overview will lead to a better performance concerning

navigation. This was based on the expectation that users will

stick to navigation by proxy elements even if an overview is

present. Furthermore, we investigated how precisely users can

navigate to a given off-screen node by using automatic

navigation.

To summarize, our hypotheses were as follows:

H1 Using the off-screen visualization (conditions OS and

OS+OD) is faster than using the overview+detail interface

(condition OD).

H2 For the off-screen interface, navigation task completion

time is not influenced by the presence of an additional

overview window (see conditions OS and OS+OD).

H3 With regard to orientation tasks, there is no influence of

the OS-interface (with automatic zoom+pan animation)

compared to the OD-interface (with manual zoom+pan

and overview).

H4 The off-screen visualization combined with an additional

overview view window (condition OS+OD) improves the

orientation in comparison to the OS and the OD

interfaces.

8.1 Design of the Study
For the study we applied a between subjects design. There were

three groups of participants – one for each interface.

Participants. 27 voluntary participants took part in the study

(aged 23-39 years, 7 female, one left handed). Most of them are

faculty members of the computer science department and six of

them are advanced students of higher semesters. None of them

took part in the pilot study and none of them knew the UML

diagrams and their content. They are no everyday modelers but

only two of them had no knowledge of UML class diagrams.

Figure 16. Screenshots of the interfaces for the three

conditions: OD (top), OS (center) and OS+OD (bottom). A

red viewfinder rectangle indicates the position of the

viewport within the overview.

Two participants give lectures on software modeling and five

participants stated that they are regular users of other notations

(such as activity or dataflow diagrams) and respective editors.

UML and diagram editor expertise was determined before the

study by an online questionnaire with two five-point Likert

scales. We considered these results to equally assign participants

according to their knowledge to the three conditions.

Apparatus and Interfaces. The study was conducted at a PC

running with 3 GHz, 8 GB RAM and Windows 7 (64 bit). The

display had a resolution of 1900x1200 pixels and a screen size

of 24’’. For both off-screen conditions our prototype application

was used, including the adoptions mentioned in Section 7.3 (just

the history function was disabled). Based on the results of the

pilot study the proxy elements were created by radial projection

and the zoom+pan animation was adjusted. It was made slightly

slower and zoomed out a bit more to show more of the diagram

during animation. The three interfaces are shown in Figure 16.

The width of the border region was 45 pixels. For the OD and

OS+OD interfaces the overview window occupied about 15% of

the whole display space (similar to the conditions of

Nekrasovski et al. [27]). The representation of the diagram

within the overview window was too small to read labels, but

edges were still visible. Zoom+pan interaction was activated in

all conditions. Panning was possible by dragging with the mouse

on the background, and zooming could be achieved by scrolling

the mouse wheel. Participants could also interact with the

overview by dragging the viewfinder rectangle or by clicking at

the respective position. Beyond that, the position and size of the

viewfinder was smoothly animated during zoom+pan animation

in the OS+OD interface.

Datasets. Two UML class diagrams of similar size served as

datasets for the study. The first one (D1, see Figure 19 in the

appendix) was a class diagram of a multi-touch gesture

recognizer developed in-house (90 nodes, 84 edges). The second

diagram (D2, see Figure 20 in the appendix) showed parts of the

graph visualization toolkit mxGraph [26] (99 nodes, 103 edges).

We used the same representation of class diagrams as in the pilot

study: the diagrams consisted of classes, abstract classes (5 in

D1 and 8 in D2, with labels in italics) and interfaces (5 in D1

and 10 in D2). Relationships were limited to associations,

generalizations and realizations. Furthermore, there were no

labels for relationships. Therefore, participants needed no deep

expert knowledge in UML. We manually layouted the diagrams

according to aesthetic rules [10] as in the pilot study.

Tasks. The tasks were divided into three blocks. The first block

consisted of two simple and two more complex comprehension

tasks. Thereby, we asked the participants to analyze

relationships within a UML class diagram. These tasks were

followed by a second block of orientation tasks. Participants

were asked to go back to already visited nodes to find out if they

were able to stay oriented during navigation. Both task blocks

were conducted with the two class diagrams (D1 and D2)

mentioned before. With these tasks we simulated the situation

that a user wants to edit parts of an unknown diagram. For that,

he/she has to understand several relationships starting from a

particular node of interest (task block 1). After that, the user has

to navigate back to the location he/she started from to edit the

content (task block 2).

The third block consisted of three locate tasks which were

performed only by participants doing the off-screen conditions

(OS and OS+O). To automatically navigate to a particular off-

screen node, participants had to choose the respective proxy. In

contrast to the tasks of block one and two, the locate tasks

assumed that the participants had to orient themselves within a

known diagram. As the applied diagram was unknown to them,

we simulated this situation by telling them the name and

direction of the requested off-screen node – all information users

would have if they would be familiar with the diagram. The

tasks are described in more detail in the following sub-sections.

Comprehension tasks were divided in two simple and two

complex tasks. For the simple comprehension tasks (SCT) we

asked which classes are implementing a focused interface (or

vice versa: which interfaces implement the focused class). For

that, the participants were asked to navigate to this node. Users

then had to name the classes or interfaces connected by

realizations and to navigate to a particular one of them. Both of

these simple tasks differed in the amount and the distance of

adjacent classes or interfaces. For the complex comprehension

tasks (CCT) we asked the participants to name all super classes

of a focused class. So users had to navigate from the lowest level

of the inheritance hierarchy to the top. After that, they were

asked which interface implements the topmost class. Again,

there were two of these complex tasks. They differed in the

amount of super classes to find (four and five, respectively) and

the amount of associations leading from the classes. For

example, in one case the root class was connected with several

associations so that participants had to check if they already

reached the top of the hierarchy.

Task Block 1

1.1

SCT1 and SCT2

Two sequential simple comprehension

tasks:

Which classes implement the focused

interface? (Or: Which interfaces realizes

the focused class?) Name all of them

and navigate to class/interface X.

1.2

CCT1 and CCT2

Two sequential complex comprehension

tasks:

Name all super classes of the focused

one. Which interface implements the

topmost class? Name it and navigate to

this interface.

Task Block 2

OT1, OT2

and OT3

Three sequential orientation tasks:

Navigate back to class/interface X as

fast as possible.

Task Block 3

LT1, LT2

and LT3

Three sequential locate tasks:

Choose the proxy element for the

indicated class/interface.

Table 1: Summary of the tasks

For the orientation tasks (OT) we asked the participants to

navigate to two particular classes and one interface as fast as

possible. All these nodes had been visited before and were

classes or interfaces where the comprehension tasks started.

Before they started with the respective task, we asked the

participants if they could remember the direction of the target

node. We explained this task to them beforehand. However, we

did not explicitly encourage them to memorize the navigation

path while doing the tasks of the first block. In that way, we

could see if they were able to stay oriented spontaneously.

For the three locate tasks (LT) (OS and OS+OD only) the

participants were asked to choose the proxies for two off-screen

classes and one interface. We told them the names of the

respective target nodes and manually indicated their positions

within the overview window. Participants had to estimate the

direction and to find the proper proxy element by hovering it

with the mouse cursor. The two off-screen classes were located

at the upper right and lower right, respectively. The off-screen

interface was located towards the left of the current viewport.

Procedure. At the beginning of the study we explained the

simplified UML class diagram notation to the participants. After

that, we demonstrated the interaction techniques to them. For

each condition we explained zoom+pan and the functionality of

the overview if present. For OS and OS+OD conditions we

explained the off-screen visualization in detail. This comprised

types of proxies, docking of edges, zoom+pan animation,

creation of clusters and along edge projection. After that,

participants trained the comprehension and orientation tasks

with a small class diagram consisting of 23 nodes and 25 edges.

The duration of training was about five minutes.

Comprehension and orientation tasks were performed within a

fixed order for each of the three conditions – first with diagram

D1 and then with diagram D2. After that, participants of the OS

and OS+OD conditions performed the three locate tasks. For the

OS condition the overview was activated to manually indicate

the target classes and interface. For off-screen conditions (OS

and OS+OD) a session had a mean duration of 30 minutes. For

the OD condition the duration was shorter (22 min) due to

shorter explanation and training phases.

Measurements. For block one and two we measured the

completion time for each task. For block three we counted the

attempts participants needed to find the proper proxy element.

Furthermore, we noted comments and observations during the

study. In the end, participants were asked to rate the difficulty of

the tasks and the usability of the interface on five-point Likert

scales.

8.2 Results
For the comprehension and orientation tasks we ran one-way

independent ANOVAs. The Bonferroni adjustment was used for

post-hoc comparisons. For off-screen interfaces (conditions OS

and OS+OD) some values were discarded as participants

switched to manual panning and zooming instead of using

automatic navigation by clicking proxies. This happened in only

three cases. Furthermore, in two cases tasks were not done

correctly (participants clicked proxies instead of just reading the

names).

For non-homogeneous variances we performed Kruskal-Wallis

tests (with Man-Whitney post-hoc tests). Results of the

questionnaire were mapped to a scale ranging from 0

(completely disagree) to 4 (completely agree).

Comprehension Tasks. For the overall completion time of the

comprehension tasks (see Table 1, Task Block 1) we found

significant effects for both diagrams (D1: F(2,24)=10.869,

p<.001, D2: F(2,24)=22.3, p<.001). For D1 and D2 users with

the off-screen interfaces were significantly faster than

participants using the OD interface. However, there was no

significant effect between the OS and OS+OD conditions for

both diagrams. These results confirmed our hypotheses H1 and

Fehler! Verweisquelle konnte nicht gefunden werden..

Furthermore, after comparing the completion times of D1 and

D2, we did not find any learning effects between both diagrams.

All tasks were solved correctly. The only exception was one

participant who used the OS+OD interface. He announced the

wrong class for CCT2 of D2. Beyond that, one OS user

navigated to the wrong class for SCT2, but he recognized the

mistake and corrected it.

The task completion times for the individual comprehension

tasks (condition x task) are shown in Figure 17 (top). A closer

look at the individual completion times revealed that for

diagram D1 there were significant effects for the simple

comprehension task (see 1.1 in Table 1) SCT1 (F(2,22)=10.397,

p<.001). This means, for both off-screen conditions users were

significantly faster (OS: p<.001, OS+OD: p<.003) than OD user.

Beyond that, there was a significant effect for the complex

comprehension task CCT2 (see 1.2 in Table 1). However, the

variances were non-homogenous here: H(2)=10.727, p<.005.

Users of the OS+OD (U=10.0) and the OS (U = 5.0) interface

were significantly faster than OD users.

Figure 17. Task completion times for Diagram D1 (left) and Diagram D2 (right). Top: Task completion times for Task Block 1 (SCT

= Simple Comprehension Task, CCT = Complex Comprehension Task), Bottom: Task completion times for Task Block 2 (OT =

Orientation Task), asterisks mark significant effects compared to the OD interface.

For diagram D2 we found three significant effects for both

simple comprehension tasks (see 1.1 in Table 1). For SCT1

(F(2,24)=7.784, p<.002) users of both off-screen conditions

performed faster (OS: p<.01, OS+OD: p<.004) than users of the

OD-interface. Similar results were found for SCT2

(F(2,22)=39.034, p<.001). Again, both off-screen conditions

were significantly faster (OS: p<.001, OS+OD: p<.001). Finally,

there was a significant effect for the complex comprehension

task (see 1.2 in Table 1) CCT2 (F(2,23)=7.772, p<.003). For

this task, participants using the OS interface were significantly

faster than the OD interface (OS: p<.002).

Concerning the results of the questionnaire, comprehension

tasks were rated as relatively easy to solve for all three

conditions: M = 3.8 (OD), M = 3.9 (OS), M = 4.0 (OS+OD).

There were no noteworthy differences for the ratings of simple

and complex tasks.

Orientation Tasks. Figure 17 (bottom) shows the individual

completion times for the orientation tasks. We found a

significant difference between the completion times of the OD

and OS interface for OT1 in diagram D1 ((H(2)=9.348, p<.009).

In this case, the OD interface performed significantly faster

(U=5.0). All other differences were not significant. Furthermore,

several participants did not complete all orientation tasks. In

most of the cases they gave up on task OT3. For diagram D1 it

was canceled three times for the OD interface. Beyond that, it

was canceled once for the OS interface and two times for

OS+OD interface. For diagram D2 the task OT3 was canceled

two times for the OD interface and two times for the OS+OD

interface. OT2 was canceled only once for D2 and the OS+OD

interface.

Completion times for the individual orientation tasks show that

for the OD interface participants became continuously slower

for both diagrams. This is not surprising, as it was difficult for

them to remember the locations of already visited diagram

elements over time. For both off-screen conditions the change of

completion times is less extreme. However, their mean value is

quite high with about 30 seconds. In contrast to the

comprehension tasks, the orientation tasks were rated as more

difficult: M = 1.0 (OD), M = 1.8 (OS) and M = 1.7 (OS+OD).

Many participants gave comments such as “I cannot remember

where I have been” and searched at locations they never visited

before. Altogether, these results falsify our hypotheses H3 and

H4.

One exception is the OS+OD completion time of OT1 for

diagram D1. In this case, five participants purposefully used the

overview to jump to the target node directly. This lowered the

task completion time. A rather low value can also be found for

OT 3 (D2) of the OS condition. For this task, participants should

navigate back to an interface. Three of them searched explicitly

for interface proxies and ignored other types of proxies which

resulted in lower task completion times. For the OS+OD

interface only one participant used this approach.

Locate Task. During the locate tasks of task block 3 we asked

OS+OD and OS users to choose the proper proxy elements for

indicated classes and interfaces. Figure 18 shows the mean

values of attempts for solving these tasks. A dependent ANOVA

revealed no significant effects. The overall mean value was 2.15

attempts.

Figure 18. Number of attempts for the locate tasks.

Questionnaire and comments. Concerning user satisfaction, the

off-screen conditions were rated rather well. Participants stated

that the technique was easy to learn (M = 3.4) and easy to use

(M = 3.8). Furthermore, they had fun using the system (M = 3.6)

and could imagine to apply it regularly (M = 3.6). Participants

stated that our approach is a “good technique to handle the

complexity of large diagrams” and that “it is better than zooming

in and out manually”. Beyond that, the different types of proxy

elements were clear to them (M = 3.1), the automatic zoom+pan

animation was conceivable (M = 3.6) and the creation of clusters

was comprehensible (M = 3.4). However, the current position

within the diagram was not always clear to the participants using

the OS interface (M = 1.6, OS+OD: M = 3.3) and they wished to

have an overview (M = 3.9).

8.3 Discussion
Comprehension tasks. The results of the study showed that for

exploring relationships within an unknown diagram

(comprehension tasks) our off-screen technique is at least as fast

as state-of-the-art interfaces (zoom+pan in combination with an

overview). In more difficult situations – where nodes have

several edges of different type or relevant edges are rather long

and bent several times – our technique outperforms traditional

zoom+pan interfaces significantly. For example, this was the

reason for the significant effects of the tasks CCT2 for both

diagrams. For both tasks, users of the off-screen conditions were

faster. This confirmed our hypothesis H1. Furthermore, the off-

screen visualization was easily understood by the participants

and the majority applied it successfully after a short period of

training. For the first task – SCT1 of diagram D1 – off-screen

users were already significantly faster. An overview does not

affect performance in this kind of tasks which confirmed our

hypothesis Fehler! Verweisquelle konnte nicht gefunden

werden.. Participants extensively applied our technique and did

not pay attention to the overview.

Orientation Tasks. We rejected hypothesis H3. The completion

times of the orientation tasks and the respective results of the

questionnaire revealed that it is quite difficult with our off-

screen technique to stay oriented within the given diagrams.

Initially, during the orientation tasks (OT1-OT3) with the OD

interface participants were slightly faster in going back to an

already visited location. We see the reason for this in the fact

that when using a traditional zoom+pan interface, the navigation

is performed by the users themselves. Therefore, at least the last

navigation steps are easier to memorize. In contrast to that, our

approach applies automatic navigation by animation. This

means, users “are navigated” by the system which makes it

difficult to recap former navigation steps. We see this as the

reason for the rather high drop-out rate for OT3 in both

diagrams. However, results of the questionnaire showed that the

zoom+pan animation is conceivable and participants stated that

they found it beneficial. For example, one participant mentioned

that he “would not trust the interface to navigate to the proper

node” without animation.

To solve the orientation tasks, participants searched for the

proper proxy which can take quite some time depending on the

size of the diagram. This behavior resulted in the rather high

completion times. Altogether, only four participants utilized the

different types of proxies and explicitly searched for an interface

proxy when they were asked to navigate to an off-screen

interface (which was the case in OT3 for both diagrams). Three

of these participants were regular users of diagram editors. From

these observations we conclude that considering the types of

proxies to speed up navigation needs more training, but can be

rather easily applied by experts.

Furthermore, we also rejected hypothesis H4. Combing the off-

screen visualization technique with an overview window does

not seem to improve orientation. During the study we observed

that it is difficult for users to pay attention to both – overview

and zoom+pan animation – at the same time during navigation.

Nevertheless, participants appreciated the existence of an

overview window, and it gave them the feeling of a better

orientation. Corresponding to that, users of the OS interface

wished to have an overview. From this we recommend that an

overview window should be available. According to the findings

of Nekrasovski et al. [27], it can serve as a cognitive cushion

and can relieve users from mental load.

To improve orientation, we suggest visualizing the navigation

path within the overview window. This can be combined with

the history function presented in Section 7.3. When the user

invokes this function, not only the proxies of the last visited

nodes are highlighted, but in addition to that the navigation path

is shown in the overview. In this way, users can observe the

chronological order in which they have visited particular

locations of the diagram. How this path is visualized in detail

(e.g., by a path of arrows or highlighting respective locations by

colors) is subject of further research.

Locate tasks. In our opinion the mean value of two attempts for

finding the proper proxy for a given off-screen node is quite

good for a rather short time of training. Two participants had

problems finding the proper proxies for rather large off-screen

classes. They stated that it was hard for them to estimate the

location of the proxy according to the center of the class.

Instead, they oriented themselves by the top or bottom border of

the class and therefore chose the wrong proxy element.

8.4 Threats to Validity
For each controlled experiment threats to validity and

limitations occur. For our study we see limitations in the UML

and visual modeling experience of our participants, as they were

no modeling practitioners. We reduced this threat by

determining the participants’ experience beforehand and created

groups with a similar mean experience. Furthermore, we applied

class diagrams with a limited amount of types of elements to

reduce the complexity for inexperienced participants. The

experiment was run with class diagrams only. Thus, the results

are not generalizable for other UML diagrams or further diagram

notations. Beyond that, we see threats to validity concerning the

scalability to larger diagrams and the prior knowledge of the

participants about the given diagrams. These aspects are

discussed in the following paragraphs.

Scalability. Concerning scalability, the study showed that our

off-screen visualization technique works well for class diagrams

with up to 100 nodes. We are confident, that our approach will

also be beneficial for larger diagrams with several hundred

nodes. Of course, a huge amount of nodes represented by a

cluster leads to a long list of previews when the cluster is

hovered. Exploring this list is time consuming and certainly

increases the task completion times. However, it is hard to

determine a concrete upper limitation concerning the number of

nodes. If the off-screen technique is beneficial depends on

several other factors, such as the given diagram layout, the

density and connectivity of the diagram as well as the particular

notation and given tasks. Moreover, in this study we did not

consider some of the other proposed techniques which address

scalability such as the area of influence (see Section 4.2.3) or

interactive filtering (see Section 5.4). In which way these factors

and techniques will influence the performance of the off-screen

visualization should be carefully studied in the future.

Prior knowledge. Furthermore, in our study we confronted the

participants with a diagram which was completely unknown to

them. They were neither familiar with the content nor with the

diagram layout and structure. In the future, we plan to run

studies which cover other situations as well. Of course, known

diagrams with familiar content can serve as datasets, such as

class diagrams which were created manually by software

modelers. Beyond that, we also plan to conduct evaluations with

unknown diagrams (unknown layout) but familiar content. For

that, class diagrams automatically generated from a known code

base can be applied. We expect that in these cases participants

will have fewer problems concerning orientation. Of course,

these studies should be conducted with modeling experts.

Finally, further features and design alternatives can be added to

the prototype and tested. Examples are the different

representations of previews as described in Section 5.1, the

techniques for showing further information within the border

region as presented in Section 4.3 or the visualization of the

navigation path within the overview.

9. CONCLUSION AND FUTURE WORK
In this paper, we contributed the application of off-screen

visualization to the domain of node-link diagrams in general and

to UML class diagrams in particular. In contrast to most of the

off-screen techniques presented so far, our approach uses

interactive proxy elements instead of simple graphical overlays

to represent off-screen nodes. The proxies are visualized within

a border region surrounding the viewport. This provides a

contextual view of diagram elements usually not visible. Besides

navigation by manual zooming and panning, our approach also

supports automatic navigation by clicking on proxies. In that

way, it is possible to navigate in a map-oriented way as well as

based on the syntactical structure of the diagram.

We presented several approaches to make the change of edge

routing as comprehensible as possible during panning and

zooming. A preferable technique for that is along edge

projection which does not affect the routing of edges at all.

Furthermore, we presented ways to make our technique scalable

to large diagrams with several hundred nodes. As solutions for

that problem, we propose filtering and clustering of proxy

elements (according to geometric and structural rules).

Furthermore, if diagrams become larger we suggested a virtual

area of influence around the viewport. It is utilized to filter

nodes located further away.

The results of a pilot evaluation showed that the off-screen

visualization technique is easy to understand and that creating

proxy elements by radial projection towards the center of the

viewport was preferred. In a second controlled experiment we

found that for exploring relationships within unknown diagrams

our approach outperforms state-of-the-art interfaces.

Furthermore, participants were able to navigate to off-screen

nodes without effort. We also found that the presence of an

overview did not improve orientation within an unknown

diagram. However, participants requested an overview as

additional cognitive support.

For future work we will improve the performance of our

prototype and add further functionality. In addition to the

features described in the paper, the positioning of the proxies

could be realized according to certain constraints by applying a

mathematic optimization approach. In that way, the amount of

geometric clusters could be minimized by translating proxies to

the next free position, whereby the distance of a proxy to its

original position is minimized as well.

Other aspects for future work are follow-up user studies

involving modeling experts and using larger diagrams. Thereby,

tasks should be used which consider the content and semantics

of the visualized diagrams. As our approach is applicable to

node-link diagrams in general, we will also apply it to other

graphical notations, such as business process models, biological

networks or feature trees used in feature-oriented software

development [43]. In previous work we investigated techniques

for diagram editing [12] and graph exploration [36] with

multitouch and pen input on interactive surfaces. The prototype

presented in this paper is integrated in the same system and also

runs on multitouch enabled displays. Therefore, for future work

we also plan to investigate how multitouch interaction

techniques can be utilized for our off-screen visualization.

10. ACKNOWLEDGEMENTS
This work was funded by the German “Stifterverband für die

Deutsche Wissenschaft” from funds of the Claussen-Simon-

Endowment. Most parts of the work were realized at the

Institute of Simulation and Graphics at the Otto-von-Guericke

University Magdeburg, Germany. We thank Sebastian Kleinau,

Ricardo Langner and Anne Rott for their great support. We also

thank the anonymous reviewers for their insightful comments.

Finally, we thank all the participants of the studies for their time

and efforts.

11. REFERENCES
[1] Baudisch, P. and Rosenholtz, R. 2003. Halo: a technique

for visualizing Offscreen objects. In Proc. of CHI ó03

(April 05 - 10, 2003), ACM, pp. 481-488.

[2] Bier, E. A., Stone, M. C., Pier. K., Buxton, W., and

DeRose, T.D. 1993. Toolglass and magic lenses: the see-

through interface. In Proc. of SIGGRAPH '93. ACM, pp.

73-80.

[3] Burigat, S., Chittaro,L. and Gabrielli, S. 2006. Visualizing

locations of off-screen objects on mobile devices: a

comparative evaluation of three approaches. In Proc. of

MobileHCI '06. ACM, pp. 239-246.

[4] Burigat, S., Chittaro, L. 2011. Visualizing references to off-

screen content on mobile devices: A comparison of

Arrows, Wedge, and Overview + Detail, In Interacting

with Computers, Volume 23, 2 (March 2011), pp. 156-

166.

[5] Cherubini, M., Venolia, G., DeLine, R., and Ko, A. J.

2007. Let's go to the whiteboard: how and why software

developers use drawings. In Proc. of CHI ô07 (April 28 -

May 03), 2007, ACM, pp. 557-566.

[6] Cockburn, A., Karlson, A., and Bederson, B. B. 2008. A

review of overview+detail, zooming, and focus+context

interfaces. In ACM Comp. Surv. 41, 1 (Dec. 2008), pp. 1-

31.

[7] Dobing, B. and Parsons, J. 2006. How UML is used. In

Commun. ACM 49, 5 (May. 2006), pp. 109-113.

[8] Dwyer, T., Marriott, K., Schreiber, F., Stuckey, P.,

Woodward, M., and Wybrow, M. 2008. Exploration of

Networks using overview+detail with Constraint-based

cooperative layout. IEEE Transact. on Visualization and

Computer Graphics 14, 6 (Nov. 2008), pp. 1293-1300.

[9] Eclipse UML, http://www.eclipse.org/uml2

[10] Eichelberger, H., Schmid, K., 2009. Guidelines on the

aesthetic quality of UML class diagrams, Information and

Software Technology, Volume 51, Issue 12, December

2009, pp. 1686-1698, ISSN 0950-5849.

[11] Frisch, M., & Dachselt, R., 2010. Off-screen visualization

techniques for class diagrams. In Proc. of the 5th

international symposium on Software visualization (pp.

163–172). New York, NY, USA: ACM.

[12] Frisch, M., Heydekorn, J. and Dachselt, R. 2010. Diagram

editing on interactive displays using multi -touch and pen

gestures. In Proc. of the 6th international conference on

Diagrammatic representation and inference (Diagrams

‘10), Springer, pp.182-196.

[13] Frisch, M., Dachselt, R., & Brückmann, T., 2008. Towards

seamless semantic zooming techniques for UML diagrams.

In Proc. of the 4th ACM symposium on Software

visualization (pp. 207–208). New York, NY, ACM.

[14] Furnas, G. W. 1986. Generalized fisheye views. SIGCHI

Bull. 17, 4 (Apr. 1986), 16-23.

[15] Ghani, S., Riche, N. H., & Elmqvist, N., 2011. Dynamic

Insets for Context-Aware Graph Navigation. Computer

Graphics Forum, 30(3), 861–870.

[16] Gustafson, S., Baudisch, P., Gutwin, C., and Irani, P. 2008.

Wedge: clutter-free visualization of Offscreen locations. In

Proc. of CHI ô08 (April 05 - 10, 2008), ACM, 787-796.

[17] IBM Rational Rose,

http://www.ibm.com/software/awdtools/developer/rose/

[18] Irani, P., Gutwin, C., and Yang, X. D. 2006. Improving

selection of Offscreen targets with hopping. In Proc. of

CHI ô06 (April 22 - 27, 2006), ACM, pp. 299-308.

[19] Irani, P., Gutwin, C., Partridge, G., & Nezhadasl, M., 2007.

Techniques for interacting with off-screen content. In Proc.

of the 11th IFIP TC 13 international conference on Human-

computer interaction - Volume Part II (pp. 234–249).

Berlin, Heidelberg: Springer-Verlag.

[20] Jacobs, T. and Musial, B. 2003. Interactive visual

debugging with UML. In Proc. of Symposium on Software

Visualization (June 11 - 13, 2003), ACM, pp. 115-122.

[21] Jusufi, I., Dingjie, Y. and Kerren, A. 2010. The Network

Lens: Interactive Exploration of Multivariate Networks

Using Visual Filtering, In Proc. of 14th Conference

Information Visualisation (IV ‘10), IEEE, pp. 35 -42.

[22] Karnick, P., Cline, D., Jeschke, S., Razdan, A., & Wonka,

P., 2010. Route Visualization Using Detail Lenses. IEEE

Transactions on Visualization and Computer Graphics,

16(2), 235–247.

[23] Kagdi, H. and Maletic, J. I. 2007. Onion Graphs for

Focus+Context Views of UML Class Diagrams. In Proc.

of VISSOFT ô07, pp. 80-87

[24] Microsoft Visio, http://office.microsoft.com/visio

[25] Moscovich, T., Chevalier, F., Henry, N., Pietriga, E., and

Fekete, J. 2009. Topology-aware navigation in large

networks. In Proc. of CHI ô09 (April 04 - 09, 2009),

ACM, pp. 2319-2328.

[26] mxGraph, http://www.jgraph.com/

[27] Nekrasovski, D., Bodnar, A., McGrenere, J., Guimbretière,

F., and Munzner, T. 2006. An evaluation of pan & zoom

and rubber sheet navigation with and without an overview.

In Proc. of CHI ô06 (April 22 - 27, 2006), ACM, pp. 11-

20.

[28] Object Management Group, http://www.uml.org/

[29] Panagiotidis,A., Bosch, H., Koch, S., Ertl, T. 2011.

EdgeAnalyzer: Exploratory Analysis through Advanced

Edge Interaction, In Proc. of the Hawaii Conference on

System Sciences 2011, pp. 1-10.

[30] Perlin, K. and Fox, D. 1993. Pad: an alternative approach

to the computer interface. In Proc. of SIGGRAPH '93.

ACM, USA, 57-64.

[31] Petre, M. 1995. Why looking isn't always seeing:

readership skills and graphical programming. In Commun.

ACM 38, 6 (Jun. 1995), pp. 33-44.

[32] Reinhard, T., Meier, S. and Glinz, M. 2007. An Improved

Fisheye Zoom Algorithm for Visualizing and Editing

Hierarchical Models. In Proc. of the International

Workshop on Requirements Engineering Visualization

(October 15 - 19, 2007). IEEE.

[33] Riel, A. 1996. Object-Oriented Design Heuristics. Addison

Wesley, Boston MA, p. 32.

[34] Rohs, M. and Essl, G. 2006. Which one is better?:

information navigation techniques for spatially aware

handheld displays. In Proc. of the 8th conference on

Multimodal interfaces (ICMI '06). pp. 100-107.

[35] Sarkar, M. and Brown, M. H. 1994. Graphical fisheye

views. Commun. ACM 37, 12 (Dec. 1994), 73-83.

[36] Schmidt, S., Nacenta, M. A., Dachselt, R., and Carpendale,

S. 2010. A set of multi-touch graph interaction techniques.

In Proc. of International Conference on Interactive

Tabletops and Surfaces (ITS '10), ACM, pp. 113-116.

[37] Sharp, R. and Rountev, A. 2005. Interactive Exploration of

UML Sequence Diagrams. In Proc. of VISSOFT ó05

(September 25 - 25, 2005). IEEE Computer Society,

Washington, DC, p. 8.

[38] Shneiderman, B. 1996. The Eyes Have It: A Task by Data

Type Taxonomy for Information Visualizations. In Proc.

of the IEEE Symposium on Visual Languages (VL '96).

IEEE Computer Society, Washington, p. 336

[39] Soukup, J. and Soukup, M. 2007. The Inevitable Cycle:

Graphical Tools and Programming Paradigms. Computer

40, 8 (Aug. 2007), 24-30

[40] Sparx Systems, http://www.sparxsystems.com/

[41] Spence, R, Apperley, M. 1982. Database navigation: An

office enironment for the professional. Behav.Inf. Technol.

1, 1, pp. 43–54.

[42] A. S. Spritzer and C. M. D. S. Freitas, “Design and

Evaluation of MagnetViz - A Graph Visualization Tool,”

IEEE Transactions on Visualization and Computer

Graphics, vol. 18, pp. 822-835, 2012.

[43] Stengel, M., Frisch, M., Apel, S., Feigenspan, J., Kästner,

C., & Dachselt, R. 2011. View infinity: a zoomable

interface for feature-oriented software development. In

Proc. of ICSE 2011 (pp. 1031–1033). New York, NY,

USA, ACM.

[44] Tominski, C., Abello, J., van Ham, F., and Schumann, H.

2006. Fisheye Tree Views and Lenses for Graph

Visualization. In Proc. of the Conference on information

Visualization (July 05 - 07, 2006). IEEE Computer

Society, Washington, DC, pp. 17-24.

[45] Tominski, C.; Abello, J.; Schumann, H. 2009. Two Novel

Techniques for Interactive Navigation of Graph Layouts,

In Proc of EuroVis'09, Berlin.

[46] Turetken, O., Schuff, D., Sharda, R., and Ow, T. T. 2004.

Supporting systems analysis and design through fisheye

views. Commun. ACM 47, 9 (Sep. 2004), pp. 72-77.

[47] van Wijk, J., Nuij, W. 2004. A Model for Smooth Viewing

and Navigation of Large 2D Information Spaces, In IEEE

Transact. on Visualization and Computer Graphics, pp.

447-458.

[48] Wong, N., Carpendale, S. and Greenberg, S. 2003

EdgeLens: An Interactive Method for Managing Edge

Congestion in Graphs. In Proc. of InfoVis 2003. IEEE

Press, pp. 51-58.

[49] Wu, J., and M.-A. Storey. 2000. A multi-perspective

software visualization environment, In Proc. of

CASCON'00, November 2000, pp. 41-50.

[50] Wybrow, M., Marriott, K., Stuckey, P.J. 2006. Incremental

connector routing. In: GD 2005. Volume 3843 of LNCS.,

Springer, pp. 446-457.

[51] Zellweger, P. T., Mackinlay, J. D., Good, L., Stefik, M.,

and Baudisch, P. 2003. City lights: contextual views in

minimal space. In CHI '03 Ext. Abs. on Human Factors in

Computing Systems (April 05 - 10, 2003). ACM, pp. 838-

839.

[52] Zest, Eclipse Visualization Toolkit,

http://www.eclipse.org/gef/zest/

Appendix

Figure 19. Diagram D1 which was used for the comprehension, orientation and locate tasks.

Figure 20. Diagram D2 which was used for the comprehension, orientation and locate tasks.

