
Powerwalls and Scalability:
Implementation Issues

Ulrich von Zadow
Archimedes Exhibitions GmbH
10405 Berlin, Germany
uz@archimedes-exhibitions.de

Ricardo Langner
Interactive Media Lab
Technische Universität Dresden
01062 Dresden, Germany
langner@acm.org

Ulrike Kister
Interactive Media Lab
Technische Universität Dresden
01062 Dresden, Germany
ukister@acm.org

Raimund Dachselt
Interactive Media Lab
Technische Universität Dresden
01062 Dresden, Germany
dachselt@acm.org

Copyright is held by the author/owner(s).
CHI 2013 Extended Abstracts, April 27May 2, 2013, Paris,
France.

ACM 978-1-4503-1952-2/13/04.

Abstract
The very high resolutions supported by powerwalls and
other large display configurations pose an implementation
challenge, since rendering of the display contents must be
distributed to achieve sufficient performance. In this
position paper, we describe several strategies for
implementing corresponding middleware and overcoming
this challenge. We examine the strategies considering the
two implementation goals network transparency and
scalability. Using goals and strategies as context, we
analyze prior work in the area and present a number of
experiences in implementing commercial interactive
surfaces that use distributed rendering.

Author Keywords
Powerwall, Scalability, Multiple Displays, Display Walls,
Middleware, Rendering

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g.,
HCI)]: Miscellaneous.

Introduction
Large displays have been used successfully in many
different application areas, e.g., command and control,
vehicle design, geospatial imaging [2, 6] and scientific
visualization [5]. In these application areas, it is very



common for users to work with large amounts of data.
Correspondingly, they benefit immensely from the very
high resolutions possible using wall-sized displays. With
these resolutions, however, comes an implementation
challenge: The contents of the display - potentially 100
million pixels or more - need to be computed with
adequate performance. At the same time, development
time is a factor, so application-level code should not have
to be concerned with achieving this level of performance.

We will examine requirements and implementation
strategies for powerwall middleware. Given the above, two
important goals should be:

• Scalability: Performance should not depend on the
number of displays attached and

• Network Transparency: Application-level code
should not need to know that this is a distributed
system.

In general, sufficient computing power to achieve
scalability is present, since display walls usually run on a
cluster of PCs and there is a small, fixed number of
displays per computer. The issue, then, is in harnessing
this computing power. Amdahl’s Law [1] gives us a
guideline here: We need to maximize parallelism and
minimize those sections of the rendering pipeline that run
serialized.

The remainder of the paper will examine a number of
feasible strategies in this context. We start with an
overview of prior work, then describe the aforementioned
implementation strategies. Practical experiences with
several display wall implementations are the focus of the
next section. We conclude with a discussion and pose a
number of open research questions.

Prior Work
Much work has been done in parallel rendering and
supporting multi-display systems. Ni et al. [6] provide a
survey, while Staadt et al. [7] do a performance analysis.
Several scene graph libraries such as OpenSG [8] support
parallel rendering of 3D scenes. In general, these libraries
can provide high scalability in this application domain as
long as efficient culling – discarding of geometry based on
visibility – is possible. The popular Chromium [4] library
allows parallel execution of arbritary OpenGL code. This
makes it usable for a wide variety of applications.
Unfortunately, the current version only supports OpenGL
1.5 (at the time of writing, the latest version is 4.3). In
these systems, the application itself runs on a single
computer and rendering is distributed to the cluster. The
VR framework VRJuggler [3] takes a different approach:
The application runs on all computers, execution is
synchronized and user input distributed to all nodes.

Using prior work as well as our own experiences in
implementing multi-display renderers as basis, we have
identified a number of possible implementation strategies.
These are described in the following section.

Implementation Strategies
This following section describes a number of possible
approaches and delienates corresponding consequences
with respect to the system goals of scalability and network
transparency. It also places the prior work described above
in this framework.

Variant 1) Central Master, Rendering on Master
The application runs on a central computer, the master.
All user input is routed to this computer, which runs
application-level code and does all rendering at full
resolution. The resulting images are distributed over the



network to display slaves that only place the respective
images on the screen. A positive aspect of this method is
that it is easy to achieve network transparency. On the
flip side, it is obvious that the approach does not scale at
all, since the central computer has a very high working
load. In addition, the transfer of complete display images
consumes very large amounts of network bandwidth even
if compression is taken into account. Still, depending on
the application area, this can be a feasible strategy
because it is easy to realize. For instance, the ’wall’ video
filter of the VLC video player1 is implemented in this way.

Variant 2) Synchronized Applications, Full Scenes
In this approach, there is no central master. An identical
application runs on all computers, all input is broadcast to
the complete cluster and the complete scene is processed
on all of them as well. However, each computer only
renders the subset of the scene that is actually visible on
its display. Network transparency is achieved only in part,
because application code needs to be completely
deterministic for this to work – timing-dependent or
random behaviour will cause loss of synchronization. This
approach scales well to a certain extent, since rendering is
done in parallel. It is also relatively straightforward to
implement. VRJuggler [3] is realized in this way but uses
an additional central master that is only responsible for
synchronization.

Variant 3) Synchronized Applications, Partial Scenes
Figure 1: Famous Grouse
Experience interactive floor.

Similar to variant 2), there is no central master. An
identical application runs on all computers, but in contrast
to 2), each application instance only handles the part of
the scene that it is displaying. Input is also handled
locally, and synchronization of scene content is done at
application level. Because of this, there is no network

1http://www.videolan.org/vlc/

transparency. In principle, this approach leads to the same
issues with nondeterministic applications as 2), but
application-specific code can mitigate the effects. On the
positive side, since even the application code runs in
parallel, this variant scales better than all other solutions.

Variant 4) Central Master, Distributed Rendering
In this approach, there is one central master that runs the
application and handles user input. Rendering is prepared
on this computer as well. The scene is then distributed
and display slaves are responsible for rendering their
individual parts. This strategy provides full network
transparency. It also scales fairly well, since the rendering
is done in parallel.

OpenSG [8] and several other scene graph libraries, as well
as the Chromium OpenGL wrapper [4], implement this
method. The implementations differ in the exact way that
work is distributed and the amount and type of work done
on the master. For instance, Chromium transfers the
complete scene geometry in every frame, limiting
performance for complex scenes, but it only distributes
geometry to those nodes that will actually display it.
OpenSG does the opposite: Each node receives the
complete scene, but only geometry changes are
distributed [7].

Realization Examples
In the following section we will describe examples of large
display implementations in which we took part, explaining
challenges and issues that we faced. We place these
examples in the framework delienated in the previous
section and examine the solutions with respect to the
goals presented in the introduction.



Famous Grouse Experience
The Famous Grouse Experience is an interactive
environment at the Glenturret Distillery in Creif, Scotland,
that we implemented in 2002 at ART+COM2. The
installation features an interactive floor realized using six
projectors - figure 1 shows it in use. A central master
processes user input and sends input events as well as
high-level application state messages to six display servers.
The display servers are application-specific; additional
peer-to-peer messages are sent to synchronize low-level
application state. For instance, one application phase
features a water simulation. This simulation runs in a
distributed fashion and water level data is exchanged
between adjacent display servers.

The setup combines elements of variants 3 and 4. Since
all networking and synchronization is handled by the
application, we were able to distribute the work very
effectively. On the other hand, the logic is complex:
master-slave as well as peer-to-peer networking is
implemented at the application level and interspersed with
other application code. The unclear separation of
concerns led to code that was difficult to understand and
a correspondingly high development time.

O2 Sculpture
Figure 2: Layout of the O2
Sculpture

The O2 Sculpture we implemented at ART+COM in 2004
is the central element in the flagship store of the
telecommunications provider O2 in Munich3. It consists of
an 18 meter long interactive strip that has floor, table and
wall parts - shown in figure 2. Twelve ceiling-mounted
projectors are used as displays. The installation features
fairly involved interaction and a complex 3D scene.

2http://www.artcom.de/en/projects/project/detail/grouse-
experience/

3http://www.artcom.de/projekte/projekt/detail/o2-skulptur/

Among the scene elements are ice that cracks when
stepped upon and O2-typical water bubbles as well as
rendered cell phones and videos (see figure 3). This
installation was realized in a fashion similar to variant 3:
There is no central master and input is processed locally.
Each computer has the complete scene in local storage
but only modifies and renders those elements which it
displays. Scene changes are then broadcast and replicated
across the cluster. Again, we were able to distribute work
very effectively, but application-level synchronization led
to a high development time.

Figure 3: O2 Sculpture in idle state.

Max Planck Science Gallery Berlin
At Archimedes Exhibitions, we developed and deployed a
six display multitouch wall at the Max Planck Science
Gallery in Berlin in 20124 (see figure 4). Content elements

4http://www.archimedes-exhibitions.de/exhibitions/highlights/ /max-
planck-science-gallery.html



Figure 4: Multitouch wall at the Max Planck Science Gallery

are images, videos and text snippets that form a narrative
and move from one display to the next. The
implementation was based on the media development
framework libavg5. The parallelization strategy
corresponds to variant 2, with the entire scene processed
on each computer, user input broadcast across all displays
and a cropped scene rendered locally.

Even though, e.g., video decoding is duplicated on all
nodes, the installation has ample performance reserves. In
large part, this is due to the fact that libavg performs
video decoding in parallel on different cores of the
computer and utilizes hardware decoding where possible
as well. However, it does not scale. Network transparency
is not fully achieved, because realizing a fully deterministic
application is significant work: Subtle timing variations
can lead to wildly different application states in extreme
cases.

5https://www.libavg.de

Conclusion and Future Work
We have examined a number of implementation strategies
for supporting very high-resolution displays with regard to
the two goals scalability and network transparency. In
addition, we have described several real-life
implementations of distributed rendering systems and
analyzed them in relation to the same goals.

We are interested in exploring this further. Variant 4
(distributed rendering with a central master) seems to be
the only approach that couples network transparency with
sufficient scalability, and there seem to be a number of
open questions along this route. As an initial step, it
would be interesting to have more information on the
types of loads that typical powerwall applications
generate: What processing power does the application
logic need? Is there a high CPU load because of geometry
processing? How many graphics primitives are there?
Does the geometry change regularly? Is a large amout of
fragment processing power needed? Is video display (or
are other forms of display streaming) needed? In other
words: Where are the bottlenecks? Different application



domains - command and control, vehicle design,
geospacial imaging, scientific visualization, etc. - will all
have different answers to these questions, and they can be
used to determine requirements for middleware.

Given these requirements, it should be possible to
evaluate existing solutions in-depth: How do they cope
with typical loads across the rendering pipeline? How does
this match to the requirements of the different application
domains? Both questions can be explored on a conceptual
level and by crafting appropriate benchmarks. Finally,
these insights could be used to build new, more powerful
middleware that combines full network transparency with
a maximum amount of scalability.

Acknowledgements
We would like to thank our colleagues at Archimedes and
ART+COM for the work on the distributed rendering
systems described.

References
[1] Amdahl, G. M. Validity of the single processor

approach to achieving large scale computing
capabilities. In Proceedings of the April 18-20, 1967,
spring joint computer conference, AFIPS ’67 (Spring),
ACM (New York, NY, USA, 1967), 483–485.

[2] Ashdown, M., Tuddenham, P., and Robinson, P.
High-resolution interactive displays. In Tabletops,
C. Müller-Tomfelde, Ed., Human-Computer
Interaction Series. Springer, 2010, 71–100.

[3] Bierbaum, A., Hartling, P., Morillo, P., and
Cruz-Neira, C. Implementing immersive clustering with
vr juggler. In ICCSA (3), O. Gervasi, M. L. Gavrilova,

V. Kumar, A. Laganà, H. P. Lee, Y. Mun, D. Taniar,
and C. J. K. Tan, Eds., vol. 3482 of Lecture Notes in
Computer Science, Springer (2005), 1119–1128.

[4] Humphreys, G., Houston, M., Ng, R., Frank, R.,
Ahern, S., Kirchner, P. D., and Klosowski, J. T.
Chromium: a stream-processing framework for
interactive rendering on clusters. In Proceedings of
the 29th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’02, ACM (New
York, NY, USA, 2002), 693–702.

[5] Isenberg, P., Isenberg, T., Hesselmann, T., Lee, B.,
von Zadow, U., and Tang, A. Data visualization on
interactive surfaces: A research agenda. IEEE
Computer Graphics and Applications 33, 2 (2013). To
appear.

[6] Ni, T., Schmidt, G., Staadt, O., Livingston, M., Ball,
R., and May, R. A survey of large high-resolution
display technologies, techniques, and applications. In
Virtual Reality Conference, 2006 (march 2006), 223 –
236.

[7] Staadt, O., Walker, J., Nuber, C., and Hamann, B. A
survey and performance analysis of software platforms
for interactive cluster-based multi-screen rendering. In
Proceedings of the workshop on Virtual environments
2003, ACM (2003), 261–270.

[8] Voß, G., Behr, J., Reiners, D., and Roth, M. A
multi-thread safe foundation for scene graphs and its
extension to clusters. In Proceedings of the Fourth
Eurographics Workshop on Parallel Graphics and
Visualization, EGPGV ’02, Eurographics Association
(Aire-la-Ville, Switzerland, Switzerland, 2002), 33–37.


	Introduction
	Prior Work
	Implementation Strategies
	Variant 1) Central Master, Rendering on Master
	Variant 2) Synchronized Applications, Full Scenes
	Variant 3) Synchronized Applications, Partial Scenes
	Variant 4) Central Master, Distributed Rendering

	Realization Examples
	Famous Grouse Experience
	O2 Sculpture
	Max Planck Science Gallery Berlin

	Conclusion and Future Work
	Acknowledgements
	References

