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Abstract. Although quite a number of RDF triple store benchmarks
have already been conducted and published, it appears to be not that
easy to find the right storage solution for your particular Semantic Web
project. A basic reason is the lack of comprehensive performance tests
with real-world data. Confronted with this problem, we setup and ran our
own tests with a selection of four up-to-date triple store implementations
– and came to interesting findings. In this paper, we briefly present the
benchmark setup including the store configuration, the datasets, and
the test queries. Based on a set of metrics, our results demonstrate the
importance of real-world datasets in identifying anomalies or differences
in reasoning. Finally, we must state that it is indeed difficult to give a
general recommendation as no store wins in every field.
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1 Introduction

The last months inevitably reveal the advance of Semantic Web technologies
in organizing and finding information, e. g., through the advent of schema.org
or Google Knowledge Graph [1]. This is especially fostered by the widespread
W3C standards like RDF(S), OWL, and SPARQL to allow for publishing and
consuming Linked (Open) Data. As their benefits become more and more clear,
also vendors in the publishing sector, e. g., moresophy [2], are applying these
technologies to facilitate the semantic tagging and searching of media assets
within their archives. An important and critical issue when developing large-
scale Semantic Web applications is the right choice of an appropriate storage
solution for RDF-based data. Comprehensive benchmarking results may help to
estimate the applicability of state-of-the-art triple stores for ones own project.

Although, a number of performance reports already exist, we soon discovered
that available results are of limited significance for our particular purposes. The
goal of our research project Topic/S [3] is to provide a topic-based ranking and
search of texts, images, and videos delivered by press media agencies. Therefore,
we rely on the information automatically extracted from the media assets using
NLP algorithms, but also consume other datasets to broaden the knowledge
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graph of our archive, e. g., with information about people or organizations from
New York Times [4] or YAGO2 [5], to improve the search. Thus, we heavily
depend on a high-performance RDF storage solution – on the one hand for the
extracted semantic data, and on the other hand for simulating public SPARQL
endpoints for the required third party datasets (for the reason of continuous
availability and serviceability).

A review of the existing work in the area of RDF store benchmarking [6]
exposes that the results are interesting but not quite helpful for our use case
due to varied reasons. A prominent reason is the lack of comprehensive tests on
real-world datasets (non-synthetic). According to [7] automatically generated
datasets used for benchmarking differ from real datasets, like DBpedia or Word-
Net, regarding “structuredness”, and inevitably lead to different benchmarking
results. BSBM [8, 9] is the most advanced benchmark available with regard to
data size, parameters, or number of RDF stores. Unfortunately, the results are
building on a generated dataset apart from our media archive domain. Further,
the last test does not address SPARQL 1.1 [10]. Another project to be mentioned
is SP2Bench [11] which dealt with the use of a broad range of possible SPARQL
constructs and their combination – without reasoning. As the benchmark was
carried out in 2008 on a generated dataset the results were also not beneficial for
us. In contrast to that, the FedBench suite [12] focused on query federation on
real-world datasets. However, the benchmark does not address RDFS reasoning
nor SPARQL 1.1. Further, current RDFS stores like Virtuoso are not tested.
A very comprehensive and most up-to-date survey on existing RDF stores is
given in [13]. The results of this survey, carried out in the context the Europeana
project [13], were build upon previous studies which the authors extended by
their own benchmark using the (real-world) Europeana dataset (bibliographic
metadata, approx. 380 million triples). Even though the results are the most
up-to-date available (March 2011), the performance of the stores are maybe
improved meanwhile. Moreover, the tests also did not consider RDFS reasoning,
SPARQL 1.1, and heavy load (multiple queries in parallel).

In this paper we present the latest results of “yet another” benchmark
of current RDF stores – but with the following unique features: loading and
querying real-world datasets, testing RDFS reasoning and SPARQL 1.1 queries,
conducting multiple queries in parallel, and recording the memory requirements.

Thus, the paper is organized as follows: In the next section, we briefly sum-
marize the benchmark setting, including the selected RDF stores, the datasets
and queries. In Section 3, we shortly introduce the metrics, present and discuss
the results of our benchmark. A conclusion and outlook on future work is given
in Section 4.

2 Benchmark Setup

In this section, we briefly introduce which RDF stores we have selected and
how we set them up in our benchmark. In the second part, we present the four
real-world datasets and the queries we utilized for our evaluation.

Proceedings of the 2nd International Workshop on Semantic Digital Archives (SDA 2012)

86



2.1 RDF Triple Stores

Although, there are more RDF stores available, we focused on Apache Jena
[14], BigData RDF Database [15], OWLIM Lite [16], and OpenLink Virtuoso
[17] within our benchmark due to the restrictions of our project setup: freely
available, allows to handle up to 100 million triples, supports RDFS reasoning
as well as SPARQL 1.1, and is build for the Java runtime environment.

The Apache Jena projects comes up with a bunch of sub-systems. For our
purpose we needed a fast triple store as well as a SPARQL endpoint, thus, we
relied on the Fuseki server with the version 0.2.3 which includes TDB 0.9.0 –
a high performance RDF store. We used Fuseki with the default configuration.
The RDFS reasoning is applied using an assembler description file.

BigData R©is a high-performance RDF database which includes the Nano-
SparqlServer as SPARQL endpoint. We used the version 1.2.0 which comprises
SPARQL UPDATE functionality. We employed the default setting except for
setting up the RDFS reasoning within the RWStore.properties file.

Ontotext distributes three OWLIM editions. We deployed OWLIM-Lite 5.0.5
which builds on top of Sesame 2.6.5 and is freely available. Further, it is designed
for datasets up to 100 million triples which fits our requirements.

Virtuoso provides an open source edition of their RDF store which includes
a SPARQL endpoint. We installed version 6.1.5 und used the default setting.
Inference is done only on runtime while querying.

Our benchmarks were conducted within a Ubuntu Linux 12.04 64bit virtual
machine on a Intel Xeon CPU X5660 2.80GHz with 4 cores, 16GB RAM and
120GB virtual hard drive. The stores ran within Java 1.7.0 64bit runtime envi-
ronment. If an application server was required, e. g., for OWLIM-Lite, we used
Apache Tomcat 7.0.28.

2.2 Datasets and Queries

Especially as we want to reuse existing semantic datasets within the Topic/S
project [3], e. g., to link named entities to DBpedia or YAGO2 [5], we chose
to test the stores with real-world data. Furthermore, we could check if some of
the stores had problems in loading or querying the data. To allow for a better
comparability we transformed all sets to the N-Triple format what means that
every row contains a single RDF triple. Therefore, for all but YAGO2 Core
we used the current version of TopBraid composer. For YAGO2 we used the
RDF2RDF tool [18]. The New York Times dataset [4] is originally distributed
over four files which were merged. Table 1 gives an overview of the used sets
which illustrates their difference of the general size but also of the schema and
the number of instances.

We defined 15 queries per dataset using the SPARQL 1.1 query language. To
compare the performance between stores and datasets at once, we created six
general queries, e. g., counting the number of distinct subjects or the occurrence
of the properties. The further nine queries are dataset-dependent and designed
for real-world scenarios in Topics, for instance to retrieve the names of persons
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NY
Times

Jamendo
Movie
DB

YAGO2
Core

Size (in MByte) 56,2 151,0 891,6 5427,2
Triples (in Mio) 0,35 1,05 6,15 35,43
Instances (in k) 13,2 290,4 665,4 2648,4
Classes 19 21 53 292861
Properties 69 47 222 93

Table 1. Overview of the benchmark datasets

living in a dedicated time. Four of them are SELECTs with rising complexity,
e. g., by using UNION, regex filters, or subqueries. Query 11 is used to investigate
the DESCRIBE performance. In query 12 and 13 we especially considered the
performance of RDFS inference. The last two UPDATE queries delete and insert
triples. The complete list of queries can be found at [19].

3 Benchmark Results

In the following, we give a brief introduction to the metrics and the execution
plan of our benchmark tests. The actual results of the tests are presented in
Section 3.2.

3.1 Benchmark Metrics and Execution

In our benchmark we propose several metrics to capture different evaluation
aspects for the stores. They are tested with all four datasets which are different
in size and structure (c.f. Sect. 2.2). Furthermore, all the metrics are evaluated
with and without RDFS reasoning (except the multi-client performance tests
which were conducted exclusively with reasoning).

1. Loading time: At first, we measured the loading time of each dataset with
the stores three times and calculated the average.

2. Memory requirement : Further, we measured the memory consumption of
each store after the datasets were loaded.

3. Per-query type performance: Our main focus was to compare the query
performance of the stores. We mainly distinguish between the generic, the
dataset-specific, and the UPDATE queries. For our report we calculate the
average but also extract the min and max values.

4. Success rate: We also investigate the success rate of each query. We define
a query to be successful if it delivers the expected results without any error
or timeout.

5. Multi-client performance: For the multi-client scenario we measured the
average query performance as well as how many queries could be executed
within a 10 minutes time slot.
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For the execution of the query benchmark we loaded the same dataset into
all installed and pre-configured stores. Further, we wrote a simple Java client
(test driver), which is available at our website [19], to rise automation and
comparability. It requests a store with all 15 queries 20 times in a round robin
manner. Having all values, we compute the average for each query. After all
four sets were evaluated, we enabled RDFS reasoning for the stores, loaded the
data, and did the same request using the test driver. Besides theses metrics, we
evaluate how the stores scale in a multi-client scenario. Therefore, we loaded the
NY Times dataset in every store with enabled RDFS reasoning. We selected four
queries – two generic and to dataset-specific – which had approximately the same
average execution time and called them using our test driver in a randomized
round robin mechanism.

3.2 Experimental Results and Discussion

From our benchmark we gain several insights we will discuss in the following
paragraphs. The selected Figures 1, 2 and 3 give a short summary of our results,
whereas our website [19] provides more detailed information. Please mind, that
Figures 1(c), 2(c) and 3 use logarithmic scaling.

Fig. 1 showcase the benchmark results with RFDS inference turned off. The
first interesting finding is that OWLIM Lite performs best and Virtuoso worst
to load all four datasets. BigData was fast but we identified a strange behaviour
with the regex filters. The worked well for all datasets exempt from Jamendo.
Here, all queries with a regex deliver no result. Further, query 3 and 13 on
YAGO2 Core caused timeouts but BigDatas log didn’t provide any insight
to solve the problem. Next, Virtuoso is the store of your choice if you had
many UPDATE transactions (query 14 and 15) to handle. If we compare all
INSERT and DELETE queries of all datasets, it is approximately 4 times faster
then second-placed Fuseki. With regard to all queries made, the performance
of OWLIM Lite and Virtuoso is nearly the same. Only with the 35 million
dataset Virtuoso fell back. Finally, we identified that Fuseki scales really bad
with subquery requests on NY Times and Jamendo. Unfortunately, we could
not identify a particular reason as the query complexity is quite the same as for
the other two datasets.

Our findings regarding the abilities of the stores to support RDFS reasoning
are displayed in Fig. 2. Here, Fig. 2(a) confirms that OWLIM Lite is approx-
imately 80% faster than Virtuoso regarding the load performance. As Fuseki
is almost as fast like without reasoning, we run into performance issues with
BigData. For our technical setup, it was not possible to load YAGO2 Core into
the store because the created temporary file exceeded the disk space. But all in
all, the memory consumption of the store changes only slightly (Fig. 2(b)). The
average execution times of the queries (c.f. Fig. 2(c)) show that Virtuoso is still
the fastest on UPDATEs by far – approximately 8 times faster than the second-
placed Fuseki. The performance of OWLIM and BigData decreases dramatically
with this query type. Similar to the subquery problem of Fuseki we found that
Virtuoso performs really bad with two generic queries (query 4 and 5) on the
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Fig. 1. Overview of the results without RDFS reasoning: (a) describes the loading
time of the stores and (b) shows the final memory consumption; (c) allows for comparing
the performance per-query type
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Fig. 2. Overview of the results with RDFS reasoning: (a) describes the loading time of
the stores and (b) shows the final memory consumption; (c) allows for comparing the
performance per-query type. Here, YAGO2 is left out because of some shortcomings.
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Fig. 3. Comparison on average query execution time (in ms) in our multi-client scenario
using the NY Times dataset

Jamendo dataset. As the reason is not obvious it strengthens our finding that
benchmarks on real-world datasets is important. In the end, we must state that
the query performance decreases in general.

The bar chart in Fig. 3 illustrates the average query execution time in our
multi-client setup. OWLIM Lite scales best with factor 2 from single to five as
well as 5 to 10 clients. Fuseki and BigData are running shoulder on shoulder as
both scale quite linear to the number of clients. For Virtuoso, the performance
of query 2 does not depend on the number of clients. But it unfolds issues for
some queries, e. g., query 9 is around 533 time slower with 10 clients compared
to the single client scenario.

In the end, we want to review the error rate in a qualitative way. First, we
need to state that we faced issues regarding YAGO2 Core with RDFS inference
turned on so that we did not measure any query performance. For instance,
BigData produces a temporary file which exceeded the disk space of our virtual
machine or Fuseki timed out for some of the queries. Second, our generic queries
comprise the SPARQL COUNT statement so that we could easily compare the
results. Within the RDFS inference scenario the benchmark was very surprising
as for the queries 1, 2, 3, and 6 every triple store returned a different result.
Further, OWLIM Lite was the only store which counts more triples for query 4
and 5. Thus, our urgent advice for your own project is to cross-check the results
at random if you need to use RDFS reasoning. Third, another anomaly we faced
was that BigData had problems with regex filters but only on Jamendo dataset.
This underlines again the need to benchmark an RDF store with different real-
world datasets.

4 Conclusion

In this paper we present yet another triple store benchmark as we did not find
anyone with evaluation criteria like they are required for our research project:
loading and querying real-world datasets, testing RDFS reasoning and SPARQL
1.1 queries, as well as conducting multiple queries in parallel. In the following,
we discuss our four findings.
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As first result on our work with four up-to-date store we need to state,
that comprehensive tests with real-world data are necessary. Otherwise it is not
possible to detect anomalies like we identified. Second, every tested store allows
for RDFS inference. But be careful as the result set may differ from store to
store. Third, SPARQL 1.1 is well implemented nowadays. But the performance
on UPDATE queries is varying. Here, Virtuoso stands out. Finally, we could not
recommend any triple store in general as no store could win on all fields. Thus,
the selection strongly depends on your specific project requirements. For our
work, we will rely on OWLIM Lite because we need one which is fast in reading
the datasets and multi-client query processing.

As we had problems with YAGO2 Core and inference, especially with regard
to our technical setup, we are evaluating the requirements for bigger datasets.
Besides the core version we like to benchmark the stores with YAGO2 Full as
well. Another future work is to evaluate the performance of OWL reasoning
for some common constructs, e. g., cardinalities. Therefore, we need to identify
suitable real-world datasets.
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