
FeatureCommander: Colorful #ifdef World

Janet Feigenspan, Maria
Papendieck

University of Magdeburg

Christian Kästner
Philipps University Marburg

Mathias Frisch, Raimund
Dachselt

University of Magdeburg

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—User interfaces; D.2.3 [Software Engineering]:
Coding Tools and Techniques—Top-down programming

Keywords
FeatureCommander, Preprocessor, Program Comprehension

Software product line engineering is a promising paradigm
to create variable software. In practice, conditional compila-
tion is often used to implement software product lines, such
that code of features is annotated with ifdef directives. How-
ever, preprocessor usage can lead to obfuscated source code
that is hard to understand and maintain. In the literature,
ifdef directives are even referred to as “ifdef hell” [1, 5].

To support developing and maintaining preprocessor-based
software, we implemented FeatureCommander. We show a
screenshot in Figure 1. FeatureCommander is a prototype
that makes consistent use of (a) background colors to high-
light source code of features (i.e., code annotated with an
ifdef directive) and (b) views to navigate features in the code
base.

First, we highlight source-code fragments that belong to a
feature OPT PRIOCPL (wrapped with #ifdef CONFIG_XENO_

OPT_PRIOCPL) with that feature’s color. The benefit of col-
ors is that humans process colors preattentively and, thus,
considerably faster than text [3]. In addition to background
colors, we illustrate ifdef directives and their nesting with
vertical bars next to the code editor. Hence, locating and
tracking (scattered, nested, and even very long) conditional
code fragments in a file becomes easier.

Second, to navigate between features in different files, we
provide additional views that use the same color metaphor.
In the file browser (explorer view), we represent the amount
of feature code using a small bar chart, again using the fea-
tures respective colors. Vertical bars in this chart represent
the relative amount of feature code, again using each fea-
ture’s color. The same visualization is used for files and en-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright SPLC’11, August 21-26, 2011, Munich, Germany ACM 978-1-
4503-0789-5/11/08 ...$10.00.

Figure 1: Screenshot of FeatureCommander, show-
ing explorer view (left), source-code view (middle),
and feature-model view (top right). Colors can be
dragged from the color palette (bottom right) and
dropped on a feature in any view.

tire folders. In addition, we provide facilities of navigating
the source tree by feature. This way, developers can get a
quick overview of how features are distributed and navigate
between them.

To scale color usage to large software systems, we provide
an as-needed mapping of colors to features. By default, each
feature is assigned a shade of gray. That is, we see different
shades as background colors and in the bar chart. Shades
of gray are sufficient to recognize that there is some feature
code and that different features are involved. To analyze a
feature (or small set of features) in more detail, the developer
assigns more distinguishable colors to individual features per
drag and drop. This reflects that developers typically work
with only few features at a time, whereas the major part of
the source code does not need to be highlighted.

This way, background-color usage scales to large software
projects with several hundred features. This is a major ad-
vantage of FeatureCommander compared to existing color
concepts, for example as implemented in CIDE [4].

To evaluate whether the implemented background-color
concepts work on a large scale, we conducted a controlled
experiment based on Xenomai1, a large program with over
160,000 lines of code and over 300 features [2]. We found
that background colors speed up the comprehension process

1http://www.xenomai.org

This is the authors version of the paper and intended for personal use only. Any other use may violate the ACM copyright.

and that subjects like the color idea. Details of the experi-
ment, the prototype implementation, and a video demon-
strating the core concepts are available at http://fosd.

net/fc.

Acknowledgment
Feigenspan’s and Frisch’s work is supported by BMBF project
01IM08003C (ViERforES).

1. REFERENCES
[1] J. Favre. Understanding-In-The-Large. In Proc. Int’l

Workshop on Program Comprehension, page 29. IEEE
CS, 1997.

[2] J. Feigenspan, M. Schulze, M. Papendieck, C. Kästner,
R. Dachselt, V. Köppen, and M. Frisch. Using
Background Colors to Support Program
Comprehension in Software Product Lines. In Proc.
Int’l Conf. Evaluation and Assessment in Software
Engineering (EASE), pages 66–75. Institution of
Engineering and Technology, 2011.

[3] B. Goldstein. Sensation and Perception. Cengage
Learning Services, fifth edition, 2002.

[4] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in
Software Product Lines. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 311–320. ACM Press, 2008.

[5] D. Lohmann et al. A Quantitative Analysis of Aspects
in the eCos Kernel. In Proc. Europ. Conf. Computer
Systems (EuroSys), pages 191–204. ACM Press, 2006.

This is the authors version of the paper and intended for personal use only. Any other use may violate the ACM copyright.

