
Benefits of Interactive Display Environments
in the Software Development Process
Mathias Frisch

Otto-von-Guericke-Universität Magdeburg
Computational Visualistics/Software Engineering Group

D-39106 Magdeburg, Germany
+49 (391) 6711430

mfrisch@isg.cs.uni-magdeburg.de

Raimund Dachselt
Otto-von-Guericke-Universität Magdeburg

Computational Visualistics/Software Engineering Group
D-39106 Magdeburg, Germany

+49 (391) 6718772

dachselt@isg.cs.uni-magdeburg.de

ABSTRACT
Models become increasingly important for software development
processes. Though there is a multitude of software modeling tools
available, the handling of diagrams is still difficult. To overcome
these problems we propose the usage of novel visualization and
interaction techniques for the software development process,
including multi-touch displays, the integration of diagrams drawn
by hand and the interaction through zoomable user interfaces.

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation]: User
Interfaces – Graphical User Interfaces
D.2.2 [Software Engineering]: Design Tools and Techniques –
User Interfaces
General Terms
Human Factors

Keywords
Software development process, UML, models, diagrams,
interaction techniques, visualization, multi touch, zoomable user
interface, semantic zooming

1. INTRODUCTION
A multitude of studies has been conducted to understand typical
activities, needs and behavior of people involved in software
development processes. They focus on different aspects like co-
located meetings [5], the needs of distributed teams [7] or the
usage of diagrams [4]. Some of the main requirements for tool
support determined by these studies are:

• Providing different views for different people to the same
content would be beneficial, e.g., a high level view for
customers or managers and a low level system view for
developers.

• Digitalization of handwritten diagrams and their integration in
models or documents should be quick and easy.

• Collaborative work should be supported.

• A complete overview of the system and the visualization of
dependencies between components should be possible.

Dealing with diagrams is characteristic for all these requirements.
On the one hand diagrams may be hand drawings with an
informal and transient character [4]. On the other hand they can
represent very formal, complex and detailed models which
become more important by model driven approaches. Both types
have to be considered.
Current software modeling tools (e.g., [17], [14]) do not offer
sufficient support for those needs. They implement logical
interrelationships and dependencies but don’t visualize them.
Navigation in diagrams is often too cumbersome and a
simultaneous view on macroscopic and microscopic levels of
detail or a smooth transition between them is not possible.
Beyond that they hardly support collaborative work.
In this position paper we propose to use the potential of
interactive displays of different size (from huge wall sized
displays to tiny handhelds) for the domain of software
development. This includes multiple devices which collaborate
with each other as well as novel interaction and visualization
techniques which promise an easy and intuitive way of
interaction. Multi-touch displays, where several people can
interact simultaneously, and zoomable user interfaces are just two
examples.

Recently, some of these techniques have found their way to home
environment and entertainment applications. For instance, devices
like iPhone or iPodTouch are equipped with multi-touch displays
and game consoles like Wii offer new interactive possibilities.
Other hardware such as multi-touch screens (e.g., [11], [13]) is
not yet widespread and hardly available for consumers but this
might change in the future. It is expected that people will get used
to the convenient ways of interaction offered by these devices. To
realize such equipment new interfaces were developed and studies
were carried out to examine different kinds of applications, also in
multi user settings (e.g., [9], [10], [12]). However, to our
knowledge, up to now there are no analyses dealing with these
novel interaction paradigms in software engineering and concrete
software development processes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHASE’08, May 13, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-039-5/08/05...$5.00.

Figure 1. Three levels of detail while zooming in on a use case, (a) UML use case diagram, (b) zoom on Use Case 1 shows preview of

activity diagram which describes the process in the use case, (c) activity diagram with all features on the most detailed level

This position paper is structured as follows: Section 2 describes
interaction and visualization techniques which might be
applicable in the software development process. We also address
problems and challenges which might come up concerning the
application of these techniques in the domain of software
engineering. Section 3 suggests scenarios where novel mixed
display solutions can be used and the presented technologies can
be applied to the software development process. This section
should provide a basis for discussions in the workshop. In section
4 we describe what we plan to do in the future.

2. Novel Interaction and Visualization
Techniques applied to Software Development
2.1 Animated Diagram-Transitions
2.1.1 Transitions between diagrams
In many cases the same artifact (e.g., a certain class) appears in
several diagrams, which means that these diagrams are connected
to each other on a logical level. Visualizing this kind of
connections could improve the overview and the understanding of
the whole model. To realize this, we suggest a smooth animated
transition between diagrams using a specific artifact as a pivot
point. Blending between diagrams is beneficial for reducing the
cognitive load while switching diagram types. This approach
could be helpful when, for example, an instance of a class is
shown in a sequence diagram and the developer wants to know in
which other diagrams this instance appears or where the
appropriate class is defined.

2.1.2 Semantic Zooming
Another problem is to provide a smooth transition between a
coarse overview-model to a more detailed one. Current software
modeling tools implement geometric zooming to scale diagrams
up and down. We suggest the usage of semantic zooming
techniques where the appearance of the focused artifact or group
of artifacts changes from level to level. A prototype which
implements semantic zooming on UML-Diagrams was introduced
by [8]. This tool implements the zooming functionality for
package and class diagrams including a focus and context view.
On coarse levels package diagrams are shown. Zooming in on one
of their components makes the classes inside the package visible.
However, for other types of models such as behavior or
interaction diagrams zooming is not yet available.
There are several situations where semantic zooming on such
models would be beneficial, e.g., a zoom on use cases could end

up in a sequence or an activity diagram. The latter show more
details of the process within the use case (see Figure 1) and
provide information such as if the corresponding requirement was
considered and how it has to be implemented.
This raises the question for which types of diagrams it makes
sense to use semantic zooming, or in other words which diagrams
can be “nested” into each other in a sensible way. Another
problem with respect to this kind of interaction is the diagram
layout. If on a more detailed level some parts are changed (e.g., a
class is added) this can also have consequences for the alignment
of components in coarser levels.

2.2 Multi-touch displays
Multi-touch screens allow several users to interact simultaneously
with content by direct manipulation. Interaction can take place by
means of finger gestures, digital pens or even tangible widgets.
These techniques are rather natural and can therefore lower the
training effort for inexperienced users. A multitude of techniques
exists to ease interaction with multi-touch displays. We expect
that some of the problems addressed by these solutions also apply
to the domain of software development.
During collaborative work on huge displays the quick
accessibility of screen content far away from the user is a
challenge. Approaches like [3] and [15] were developed to solve
this issue. Concerning software development, they could be used
to add certain artifacts to existing models. Multi-user techniques
like Storagebins [16] and Currents [6] could be used in early
stages of the development process like brainstorming sessions,
collecting requirements and identifying use cases or classes, for
instance with Class-Responsibility-Collaboration Cards. Some
techniques deal with the handling of piles of artifacts on multi-
touch displays (e.g., [1]). They could be potentially used to
collapse and expand parts of class or use case diagrams. As far as
we know, none of the mentioned interaction techniques have been
tested in the domain of software development so far.

2.3 Digital pens
Digital pens make the quick digitalization of hand drawings
possible. One example is the Anoto functionality [2]. Digital pens
enabling Anoto functionality contain an integrated digital camera.
It takes snapshots of a dot pattern printed on the paper and almost
invisible to the human eye. The data collected this way is
sufficient to determine the exact position of the pen and what it
writes or draws (see Figure 2). This approach could be used to
digitize sketched diagrams and to integrate these, e.g., in existing

digital models just by putting the drawing on an interactive
tabletop display where it is recognized by the system. A digital
copy of the drawn content could be downloaded from the stylus,
could appear on the display, and could be easily integrated into
existing models, e.g., by hand gestures.

Figure 2. Functionality of Anoto [2]

3. Example Scenarios
In this section we will present example scenarios to illustrate the
utilization of multiple interactive displays in the software
development process. The aim is to provide a general basis for
discussion.

3.1 Single User Scenario
In a single user scenario a software developer uses his own
workspace (which can be a common PC) to edit diagrams or to
program. This gives him access to the parts of the system which
are currently interesting for him.
Additionally installed interactive displays can show diagrams
which give an overview of the whole architecture. A zoomable
user interface and animated transitions between diagrams can
accomplish a quick navigation between macroscopic overview
and microscopic detail view or between different parts of the
architecture respectively, as described above. Beyond that,
currently edited parts can be simultaneously visualized, e.g.,
recently edited methods are highlighted in the diagram.
We also envision a combination of several interactive multi-touch
displays. Two of these displays could be installed orthogonally to
each other to show multiple diagrams simultaneously. In this way
an overview diagram on one display and a more detailed
visualization of the same content on the other one would be
possible. A further application would be to visualize logical
relationships. As mentioned before, it is feasible, for instance, to
see where certain components of a diagram appear in other
diagrams. The selection of a class on screen 1 could cause the
indication of an instance of the same class in a corresponding
sequence diagram on screen 2. For that, we need to investigate
appropriate layout options. As shown in Figure 3 the relevant
parts of the diagram can be placed, for example, at the connecting
edge of the two displays to visualize their interconnection.
This approach could help to become acquainted with an
unfamiliar system more quickly, because of a better overview and
multiple different views on static and dynamic aspects. Another
advantage could be that dependencies between certain parts of the
system might be easier to detected, especially when divers people
working on the development of a system and edit different parts
of it separately.

Figure 3. Sketch of two orthogonal displays, screen 1 shows a
class diagram, an instance of one of the classes appears in the

sequence diagram visualized on screen 2

3.2 Multi User Scenario
Many software development activities take place in meetings.
Communicating and solving problems, designing systems or
introducing new team members are just some examples. The
number of participants can vary. It is also possible that not all
attendees are in situ, but take part via remote connection.
Horizontally and vertically arranged interactive displays can be
used as digital canvases to visualize diagrams or notes. In [5] a
summary of requirements for conference support software for
software design meetings is given. We think that many of these
requirements could be solved with the mentioned technologies. It
is possible to split the display and dedicate certain areas to certain
people. By means of semantic zooming it is possible to hide
canvases in other canvases and to rescale content conveniently.
This technique allows also a quick change from a coarse system-
overview for customers to a more detailed one for software
engineers in an easily comprehensible way. It is also conceivable
to order artifacts by certain (automatically collected) metadata
like time, place, author etc. to ensure quick searching and finding.
Especially in this scenario the mentioned Anoto functionality
could be applied to combine the advantages of quick sketches on
paper and digital diagrams. Important hand drawings do not have
to be digitalized after the meeting in a cumbersome and error-
prone way and the flexibility of paper is still given.
Smaller portable devices such as TabletPCs or handhelds can
function as private workspaces with an option to combine them
with other devices. Approaches like the one introduced in [18]
where two interactive tablets can be combined to a single display
might be promising, too. Beyond that, mobile devices can serve as
remote controls, not only by pushing buttons on the device itself,
but also by moving it around and with motion recognition through
acceleration sensors.

4. Future Work
Plans for our future work include the transfer of existing
visualization and interaction techniques into the software
engineering domain and the development of new interaction
techniques respectively. In addition, we want to investigate how
existing collaborative workspace systems are suitable for
supporting software engineering activities and how the techniques
presented in this paper can be integrated in these systems. We
plan to implement promising approaches as prototypes and to
evaluate them. First of all we will focus on the development of a

semantic zooming user interface for UML diagrams. In addition,
we want to test this solution against state-of-the-art software
modeling tools concerning user performance and feeling of
overview.

5. Conclusions
In this position paper we presented our vision how new
interaction and visualization approaches could improve the
software development process. We presented different techniques,
like multi-touch displays and zoomable user interfaces and stated
their advantages. Beyond that we suggested sample scenarios
where these approaches could be used.

6. REFERENCES
[1] Aliakseyeu, D., Subramanian, S., Lucero, A., and Gutwin,

C. 2006. Interacting with piles of artifacts on digital tables.
In Proceedings of the Working Conference on Advanced
Visual interfaces (Venezia, Italy, May 23 - 26, 2006). AVI
'06. ACM, New York, NY, 159-162.

[2] Anoto functionality, http://www.anoto.com/
[3] Baudisch, P., Cutrell, E., Robbins, D., Czerwinski, M.,

Tandler, P. Bederson, B., and Zierlinger, A. Drag-and-Pop
and Drag-and-Pick: Techniques for Accessing Remote
Screen Content on Touch- and Pen-operated Systems. In
Proceedings of Interact 2003, Zurich Switzerland, August
2003, pp. 57-64.

[4] Cherubini, M., Venolia, G., DeLine, R., and Ko, A. J. 2007.
Let's go to the whiteboard: how and why software
developers use drawings. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (San
Jose, California, USA, April 28 - May 03, 2007). CHI '07.

[5] Dekel, U. 2005. Supporting distributed software design
meetings: what can we learn from co-located meetings?. In
Proceedings of the 2005 Workshop on Human and Social
Factors of Software Engineering (St. Louis, Missouri, May
16 - 16, 2005).

[6] Hinrichs, U., Carpendale, S., and Scott, S. D. 2006.
Evaluating the effects of fluid interface components on
tabletop collaboration. In Proceedings of the Working
Conference on Advanced Visual interfaces (Venezia, Italy,
May 23 - 26, 2006). AVI '06. ACM, New York, NY, 27-34.

[7] Ko, A. J., DeLine, R., and Venolia, G. 2007. Information
Needs in Collocated Software Development Teams. In
Proceedings of the 29th international Conference on
Software Engineering (May 20 - 26, 2007). International

Conference on Software Engineering. IEEE Computer
Society, Washington, DC, 344-353.

[8] Köth, O. and Minas, M. 2002. Structure, Abstraction, and
Direct Manipulation in Diagram Editors. In Proceedings of
the Second international Conference on Diagrammatic
Representation and inference (April 18 - 20, 2002). M.
Hegarty, B. Meyer, and N. H. Narayanan, Eds. Lecture
Notes In Computer Science, vol. 2317.

[9] Mazalek A; Davenport G ; Reynolds M; Sharing and
Browsing Media on a Digital Tabletop; IEEE Multimedia,
Special Issue on Continuous Archival and Retrieval of
Personal Experiences, 2006.

[10] Morris, M. R., Paepcke, A., Winograd, T., and Stamberger,
J. 2006. TeamTag: exploring centralized versus replicated
controls for co-located tabletop groupware. In Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems (Montréal, Québec, Canada, April 22 - 27, 2006).

[11] Microsoft Surface, multi-touch display,
http://www.microsoft.com/surface/

[12] Nacenta, M. A., Pinelle, D., Stuckel, D., and Gutwin, C.
2007. The effects of interaction technique on coordination
in tabletop groupware. In Proceedings of Graphics interface
2007 (Montreal, Canada, May 28 - 30, 2007).

[13] Perspective Pixel, Inc., multi-touch displays,
http://www.perceptivepixel.com/

[14] IBM, Rational Rose, http://www-
306.ibm.com/software/awdtools/developer/rose/modeler/

[15] Reetz, A., Gutwin, C., Stach, T., Nacenta, M., and
Subramanian, S. 2006. Superflick: a natural and efficient
technique for long-distance object placement on digital
tables. In Proceedings of Graphics interface 2006 (Quebec,
Canada, June 07 - 09, 2006).

[16] Scott, S. D., Carpendale, M. S., and Habelski, S. 2005.
Storage Bins: Mobile Storage for Collaborative Tabletop
Displays. IEEE Comput. Graph. Appl. 25, 4 (Jul. 2005), 58-
65.

[17] Sparx Systems, Enterprise Architect,
http://www.sparxsystems.de/

[18] Tandler, P., Prante, T., Müller-Tomfelde, C., Streitz, N.,
and Steinmetz, R. 2001. Connectables: dynamic coupling of
displays for the flexible creation of shared workspaces. In
Proceedings of the 14th Annual ACM Symposium on User
interface Software and Technology (Orlando, Florida,
November 11 - 14, 2001).

http://www.anoto.com/
http://www.microsoft.com/surface/
http://www.perceptivepixel.com/
http://www-306.ibm.com/software/awdtools/developer/rose/modeler/
http://www-306.ibm.com/software/awdtools/developer/rose/modeler/
http://www.sparxsystems.de/

	1. INTRODUCTION
	2. Novel Interaction and Visualization Techniques applied to Software Development
	2.1 Animated Diagram-Transitions
	2.1.1 Transitions between diagrams
	2.1.2 Semantic Zooming

	2.2 Multi-touch displays
	2.3 Digital pens

	3. Example Scenarios
	3.1 Single User Scenario
	3.2 Multi User Scenario

	4. Future Work
	5. Conclusions
	6. REFERENCES

